

users. A8D12C1BB012A

FORESEE Bers. ASDI2CIBBOLZAR 2022-07-25 09.2Gbit SPI NAND Flash

Datasheet

LM-00006

Rev 1.2

30124FB5 LONGSYS ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS CT^S WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. All brand names, trademarks and registered trademarks belong to their respective owners.

This document and all information discussed herein remain the sole and exclusive property of Longsys Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or other-wise.

For updates or additional information about Longsys products, contact your nearest Longsys office.

© 2020 Shenzhen Longsys Electronics Co., Ltd. All rights reserved. D12C1BB0

2022-07-25 09:56

Everything for Memory

users. A8D12C1BB0124

Revision History

Rev.	Date	Changes		Editor	24
1.0	2021/01/15	1. Initial release		Alex BBU	
4.4 0004/44/00		1. Fix typo issue in Table 4 and Table 14.		8D1-201	
1.1	2021/11/08	2. Revise descriptions in 4, 12.5, 12.8, 14.1.	rs. F	Alex	
1.2	2021/12/01	1. Add chapter 15.	USOT	Alex	

2022-07-25 09:56

2022-07-25 09:56

D12C1BB0124FB5 Everything for Memory

30124FB5

2022-07-25 09:56

Longsys Copyright

users.

Content

2 Features 3 Product List 4 Package Types and Pin Configurations 5 Pin Descriptions 6 Block Diagram 7 Array Organization and Mapping 8 Device Operation 8.1 General 8.2 SPI Modes 8.3 Hold Function 8.4 Write Protection 9 Status Registers 9.1 Protection Register (SR-1) 9.1.1 Block Protect Bits (BP3-0, TB) 9.1.2 Status Register Protect Bits (BP3-0, TB) 9.1.3 Status Register Memory Protection 9.2 Configuration Register (SR-2) 9.2.1 One Time Program Lock Bit (OTP-L) 9.2.2 Enter OTP Access Mode Bit (OTP-L) 9.2.3 ECC Enable Bit (ECC-E) 9.2.4 Output Driver Strength (DRV1-0) 9.2.5 Quad Enable Bit (QE) 9.3 Status BRegister (SR-3) 9.3.1 ECC Status Bit (ECC51-0) 9.3.3 Write Enable Latch (WEL)	1 Gen	eral Description	ASN -
 3 Product List) Eas	11Sers.	
5 Pin Descriptions 6 Block Diagram 7 Array Organization and Mapping 8 Device Operation 8 Device Operation 8.1 General 8.2 SPI Modes 8.3 Hold Function 8.4 Write Protection 9 Status Registers 9.1 Protection Register (SR-1) 9.1.1 Block Protect Bits (BP3-0, TB) 9.1.2 Status Register Protect Bits (BPRWD, SP) 9.1.3 Status Register Memory Protection 9.2 Configuration Register (SR-2) 9.2.1 One Time Program Lock Bit (OTP-L) 9.2.2 Enter OTP Access Mode Bit (OTP-L) 9.2.3 ECC Enable Bit (ECC-E) 9.2.4 Output Driver Strength (DRV1-0) 9.2.5 Quad Enable Bit (QE) 9.3 Status Register (SR-3) 9.3.1 ECC Status Bit (ECC31-0) 9.3.2 Program/Erase Failure (P-FAIL, E-FAIL) 9.3.3 Write Enable Latch (WEL)			
5 Pin Descriptions 6 Block Diagram 7 Array Organization and Mapping 8 Device Operation 8 Device Operation 8.1 General 8.2 SPI Modes 8.3 Hold Function 8.4 Write Protection 9 Status Registers 9.1 Protection Register (SR-1) 9.1.1 Block Protect Bits (BP3-0, TB) 9.1.2 Status Register Protect Bits (BPRWD, SP) 9.1.3 Status Register Memory Protection 9.2 Configuration Register (SR-2) 9.2.1 One Time Program Lock Bit (OTP-L) 9.2.2 Enter OTP Access Mode Bit (OTP-L) 9.2.3 ECC Enable Bit (ECC-E) 9.2.4 Output Driver Strength (DRV1-0) 9.2.5 Quad Enable Bit (QE) 9.3 Status Register (SR-3) 9.3.1 ECC Status Bit (ECC31-0) 9.3.2 Program/Erase Failure (P-FAIL, E-FAIL) 9.3.3 Write Enable Latch (WEL)	3 Pro	luct List	
 Block Diagram Array Organization and Mapping Device Operation Device Operation <i>B</i> Device Operation <i>Second</i> Second <i>B</i> Hold Function <i>Hold Function</i> <i>Hold Function</i>	4 Pac	kage Types and Pin Configurations	
 7 Array Organization and Mapping	5 Pin	Descriptions	
 7 Array Organization and Mapping	6 Blo	k Diagram 0. 56	1(
 Bevice Operation 8.1 General 8.2 SPI Modes 8.3 Hold Function 8.4 Write Protection 9 Status Registers 9 Status Register (SR-1) 9.1 Protection Register (SR-1) 9.1.1 Block Protect Bits (BP3-0, TB) 9.1.2 Status Register Protect Bits (BPRWD, SP) 9.1.3 Status Register Memory Protection 9.2 Configuration Register (SR-2) 9.2.1 One Time Program Lock Bit (OTP-L) 9.2.2 Enter OTP Access Mode Bit (OTP-E) 9.2.3 ECC Enable Bit (ECC-E) 9.2.4 Output Driver Strength (DRV1-0) 9.2.5 Quad Enable Bit (QE) 9.3 Status Register (SR-3) 9.3.1 ECC Status Bit (ECCS1-0) 9.3 Write Enable Latch (WEL) 		OF US	
 8.1 General	~0?~\		
 8.2 SPI Modes 8.3 Hold Function 8.4 Write Protection 9 Status Registers 9.1 Protection Register (SR-1) 9.1.1 Block Protect Bits (BP3-0, TB) 9.1.2 Status Register Protect Bits (BPRWD, SP) 9.1.3 Status Register Memory Protection 9.2 Configuration Register (SR-2) 9.2.1 One Time Program Lock Bit (OTP-L) 9.2.2 Enter OTP Access Mode Bit (OTP-E) 9.2.3 ECC Enable Bit (ECC-E) 9.2.4 Output Driver Strength (DRV1-0) 9.2.5 Quad Enable Bit (QE) 9.3 Status Register (SR-3) 9.3.1 ECC Status Bit (ECCS1-0) 9.3 Write Enable Latch (WEL) 	8) / Dev	ice Operation	12
 8.3 Hold Function	8.1		
 8.3 Hold Function	-	SPI Modes	
 9 Status Registers		Hold Function	
9.1 Protection Register (SR-1) 9.1.1 Block Protect Bits (BP3-0, TB) 9.1.2 Status Register Protect Bits (BPRWD, SP) 9.1.3 Status Register Memory Protection 9.1.4 One Time Program Lock Bit (OTP-L) 9.2.1 One Time Program Lock Bit (OTP-L) 9.2.2 Enter OTP Access Mode Bit (OTP-E) 9.2.3 ECC Enable Bit (ECC-E) 9.2.4 Output Driver Strength (DRV1-0) 9.2.5 Quad Enable Bit (QE) 9.3 Status Register (SR-3) 9.3.1 ECC Status Bit (ECCS1-0) 9.3.2 Program/Erase Failure (P-FAIL, E-FAIL) 9.3.3 Write Enable Latch (WEL)	8.4	Write Protection	
 9.1 Protection Register (SR-1) 9.1.1 Block Protect Bits (BP3-0, TB) 9.1.2 Status Register Protect Bits (BPRWD, SP) 9.1.3 Status Register Memory Protection 9.2 Configuration Register (SR-2) 9.2.1 One Time Program Lock Bit (OTP-L) 9.2.2 Enter OTP Access Mode Bit (OTP-E) 9.2.3 ECC Enable Bit (ECC-E) 9.2.4 Output Driver Strength (DRV1-0) 9.2.5 Quad Enable Bit (QE) 9.3 Status Register (SR-3) 9.3.1 ECC Status Bit (ECCS1-0) 9.3.2 Program/Erase Failure (P-FAIL, E-FAIL) 9.3.3 Write Enable Latch (WEL) 	9 Stat	us Registers	
 9.1.2 Status Register Protect Bits (BPRWD, SP)	9.1	Protection Register (SR-1)	
 9.1.3 Status Register Memory Protection 9.2 Configuration Register (SR-2) 9.2.1 One Time Program Lock Bit (OTP-L) 9.2.2 Enter OTP Access Mode Bit (OTP-E) 9.2.3 ECC Enable Bit (ECC-E) 9.2.4 Output Driver Strength (DRV1-0) 9.2.5 Quad Enable Bit (QE) 9.3 Status Register (SR-3) 9.3.1 ECC Status Bit (ECCS1-0) 9.3.2 Program/Erase Failure (P-FAIL, E-FAIL) 9.3 Write Enable Latch (WEL) 	9.1.1	Block Protect Bits (BP3-0, TB)	
9.2 Configuration Register (SR-2) 9.2.1 One Time Program Lock Bit (OTP-L) 9.2.2 Enter OTP Access Mode Bit (OTP-E) 9.2.3 ECC Enable Bit (ECC-E) 9.2.4 Output Driver Strength (DRV1-0) 9.2.5 Quad Enable Bit (QE) 9.3 Status Register (SR-3) 9.3.1 ECC Status Bit (ECCS1-0) 9.3.2 Program/Erase Failure (P-FAIL, E-FAIL) 9.3.3 Write Enable Latch (WEL)	9.1.2		
 9.2.1 One Time Program Lock Bit (OTP-L)	9.1.3		
 9.2.2 Enter OTP Access Mode Bit (OTP-E) 9.2.3 ECC Enable Bit (ECC-E)	9.2		
9.2.3 ECC Enable Bit (ECC-E) 9.2.4 Output Driver Strength (DRV1-0) 9.2.5 Quad Enable Bit (QE) 9.3 Status Register (SR-3) 9.3.1 ECC Status Bit (ECCS1-0) 9.3.2 Program/Erase Failure (P-FAIL, E-FAIL) 9.3.3 Write Enable Latch (WEL)	9.2.1	One Time Program Lock Bit (OTP-L)	
9.2.4 Output Driver Strength (DRV1-0)	9.2.2		
 9.2.5 Quad Enable Bit (QE) 9.3 Status Register (SR-3) 9.3.1 ECC Status Bit (ECCS1-0) 9.3.2 Program/Erase Failure (P-FAIL, E-FAIL) 9.3.3 Write Enable Latch (WEL) 	9.2.3		
9.3 Status Register (SR-3) 9.3.1 ECC Status Bit (ECCS1-0) 9.3.2 Program/Erase Failure (P-FAIL, E-FAIL) 9.3.3 Write Enable Latch (WEL)	9.2.4	Output Driver Strength (DRV1-0)	
 9.3.1 ECC Status Bit (ECCS1-0) 9.3.2 Program/Erase Failure (P-FAIL, E-FAIL) 9.3.3 Write Enable Latch (WEL) 	9.2.5		
9.3.2 Program/Erase Failure (P-FAIL, E-FAIL) 9.3.3 Write Enable Latch (WEL)	9.3	Status Register (SR-3)	,
9.3.3 Write Enable Latch (WEL)	9.3.1	ECC Status Bit (ECCS1-0)	
	9.3.2	Program/Erase Failure (P-FAIL, E-FAIL)	
9.3.4 Operation in Progress (OIP)	9.3.3		
5.5.4 Operation in Progress (on)	9.3.4	Operation in Progress (OIP)	1
9.4 Sector ECC Status Register (Sector ECC Status0-3)	9.4	Sector ECC Status Register (Sector ECC Status0-3)	
9.4.1 Sector Information	9.4.1	Sector Information	2
9.4.2 Sector ECC Status 2024	9.4.2	Sector ECC Status 20:44	2
10 Commands		795	

10.2	Soft Reset (FFh)	
10.3	Read JEDEC ID (9Fh)	
10.4	Feature Operations	
10.4		23
10.4		24
10.4		
10.5	Read Operations	
10.5	 Page Read (13h) Read From Cache (03h or 0Bh) 	25
10.5	5.2 Read From Cache (03h or 0Bh)	26
10.5		
10.5		
10.6	Program Operations	27
10.6	5.1 Page Program	27
10.6	5.2 Program Data Load (02h) / Random Program Data Load (84h)	28
10.6	5.3 Program Data Load x 4 (32h) / Random Program Data Load x 4 (34h)	28
10.6	6.4 Program Execute (10h)	29
2 10.6	5.5 Internal Data Move	
10.7	Block Erase Operations	30
10.8	UID / Parameter / OTP Pages	31
10.8		
10.8	3.2 Program OTP Pages and OTP Lock Operation	.,,
10.8	3 Parameter Page Data Definition	32
11 Sof	itware Algorithm	34
11.1	Initial Invalid Block(s)	
11.2	Identifying Initial Invalid Block(s)	34
11.3	Error in Operation	
11.4	Internal ECC	36
11.5	Addressing for Program Operation	36
12 Ele	ctrical Characteristics	37
.12.1	Absolute Maximum Ratings	
12.2	Operating Ranges	
12.3	Power-up and Power-down Timing Requirements	
12.4	Pin Capacitance	38
12.5	DC Electrical Characteristics	
12.6	AC Measurement Conditions	
12.7	AC Electrical Characteristics	
12.8	Read / Program / Erase Characteristics	
13 Tim	ning Diagram	41
14 Por		
14.1	8-WSON (8x6mm) T Marking Scheme	

Longsys Copyright user

Everything for Memory

General Description 1

The F35SQA002G is a 2G-bit (256Mx8bit) Serial NAND Flash Memory, operates on a single 3.3V VCC. The device supports the standard Serial Peripheral Interface (SPI), Dual/Quad SPI: Serial Clock, Chip Select, Serial Data SIO0 (DI), SIO1 (DO), SIO2 (WP#) and SIO3 (HOLD#). SPI clock frequencies of up to 104 MHz are supported.

The F35SQA002G supports JEDEC standard manufacturer and device ID, Unique ID, one parameter page and 62 OTP pages. An internal 1-bit ECC logic is available in the chip, which is enabled by default. The internal ECC can be disabled or enabled by command.

Features 9:56 2

Voltage Supply

- VCC: 2.7V ~ 3.6V

Organization

- Memory Cell Array: (256M + 8M) Byte
- Page Size: (2k + 64) Byte
- Block Size: 64 pages, (128k + 4k) Byte

Serial Interface

- Standard SPI: CLK, CS#, DI, DO, WP#, HOLD#
- Dual SPI: CLK, CS#, SIO0-SIO1, WP#, HOLD#
- Quad SPI: CLK, CS#, SIO0-SIO3

High Performance

- 104 MHz Standard/Dual/Quad SPI clocks

- Page Program Time: 350µs (Typ.)
- Block Erase Time: 2ms (Typ.)

Low Power

- Standby: 10µA (Typ.)
- Page Read: 10mA (Typ.)
- 2022-07-25 09:56 - Program/Erase: 15mA (Typ.)

Advanced Features

- On chip 1-Bit ECC for memory array
- Sixty-two 2kB OTP Pages TS ASD12C1BB0124 Promised golden block

High Reliability

- Endurance: typical 100k cycles (1)
- Data Retention: 10 years (1)

Package

- 8-WSON (8x6mm)

Note:

users. (1) Endurance and Data Retention specification is based on 1bit / 528Byte ECC

D12C1BB0124FB5 Everything for Memory

3 Product List

Table 1 Product List									
Part Number	Density	I/О Туре	Voltage Range	Package	Temp. Range	Packing	24		
F35SQA002G-WWT	2Gb	x1, x2, x4	2.7V~3.6V	8-WSON (8x6mm)	-40°C ~ 85°C	Tray	1		
F35SQA002G-WAT	2Gb	x1, x2, x4	2.7V~3.6V	8-WSON (8x6mm)	-40°C ~ 105°C	Tray			

2022-07-25 09:56

D12C1BB0124FB5 Everything for Memory

Package Types and Pin Configurations 4

Figure 2 Pin Configuration 8-WSON (8x6mm)

5 Pin Descriptions

Table 2 Pin Description

	Table 2 Pin Description
Pin Name	Pin Functions
CS#	Chip Select The SPI Chip Select pin enables and disables device operation. When CS# is high the device is deselected and the Serial Data Output (DO or SIO0-3) pins are at high impedance. When deselected, the devices power consumption will be at standby levels unless an internal erase, program or write status register cycle is in progress. When CS# is brought low the device will be selected, power consumption will increase to active levels and instructions can be written to and data read from the device. After power-up, CS# must transition from high to low before a new instruction will be accepted.
DI, DO and SIO0-SIO3	Serial Data Input, Output and IOs The device supports standard SPI, Dual SPI and Quad SPI operation. Standard SPI instructions use the unidirectional DI (input) pin to serially write instructions, addresses or data to the device on the rising edge of the Serial Clock (CLK) input pin. Standard SPI also uses the unidirectional DO (output) to read data or status from the device on the falling edge of CLK. Dual and Quad SPI instructions use the bidirectional IO pins to serially write instructions, addresses or data to the device on the rising edge of CLK and read data or status from the device on the falling edge of CLK.
WP#	Write Protect The WP# pin can be used to prevent the Status Register from being written. Used in conjunction with the Status Register's Block Protect bits (BP[3:0], TB) and Status Register Protect bits (BPRWD, SP), a portion as small as 128k-Byte (one block) or up to the entire memory array can be hardware protected.
HOLD#	Hold During Standard and Dual SPI operations, the HOLD# pin allows the device to be paused while it is actively selected. When HOLD# is brought low, while CS# is low, the DO pin will be at high impedance and signals on the DI and CLK pins will be ignored (don't care). When HOLD# is brought high, device operation can resume. The HOLD function can be useful when multiple devices are sharing the same SPI signals. The HOLD# pin is active low. When a Quad SPI Read/Program Data Load command is issued, HOLD# pin will become a data I/O pin for the Quad operations and no HOLD function is available until the current Quad operation finishes.
FBCLK	Serial ClockThe SPI Serial Clock Input (CLK) pin provides the timing for serial input and output operations. \mathcal{U}
GND	Ground
VCC	VCC Power Supply
	No Connection

6 Block Diagram

Array Organization and Mapping 7

Everything for Memory

Device Operation 8

8.1 General

- 30124FP 1. Before a command is issued, status register should be checked via get features operations to ensure device is ready for the intended operation.
- When incorrect command is inputted to this device, this device becomes standby mode and keeps 2. the standby mode until next CS# falling edge. In standby mode, SIO pin of this device should be High-Z.
- When correct command is inputted to this device, this device becomes active mode and keeps the 3. active mode until next CS# rising edge.

19:56 **SPI Modes** 8.2

SPI NAND supports two SPI modes:

- CPOL = 0, CPHA = 0 (Mode 0)
- CPOL = 1, CPHA = 1 (Mode 3)

BB012A Input data is latched on the rising edge of CLK and data shifts out on the falling edge of CLK for both modes. All timing diagrams shown in this data sheet are mode 0. The difference of Mode 0 and Mode 3 is shown as Figure 6.

Standard SPI

SPI NAND Flash features a standard serial peripheral interface on 4 signals bus: Serial Clock (CLK), Chip Select (CS#), Serial Data Input (DI) and Serial Data Output (DO).

Dual SPI

SPI NAND Flash supports Dual SPI operation when using the x2 and dual IO commands. These commands allow data to be transferred to or from the device at two times the rate of the standard SPI.

Everything for Memory

When using the Dual SPI command the DI and DO pins become bidirectional I/O pins: SIO0 and SIO1.

Quad SPI

SPI NAND Flash supports Quad SPI operation when using the x4 and Quad IO commands. These commands allow data to be transferred to or from the device at four times the rate of the standard SPI. When using the Quad SPI command the DI and DO pins become bidirectional I/O pins: SIO0 and SIO1, users. A8D12 and WP# and HOLD# pins become SIO2 and SIO3.

Hold Function 8.3

For Standard SPI and Dual SPI operations, the HOLD# signal allows the device operation to be paused while it is actively selected (when CS# is low). The Hold function may be useful in cases where the SPI data and clock signals are shared with other devices. For example, consider if the page buffer was only partially written when a priority interrupt requires use of the SPI bus. In this case the Hold function can save the state of the instruction and the data in the buffer so programming can resume where it left off once the bus is available again. The Hold function is only available for standard SPI and Dual SPI operation, not during Quad SPI. When a Quad SPI command is issued, HOLD# pin will act as a dedicated IO pin (SIO3). B0124

To initiate a HOLD condition, the device must be selected with CS# low. A HOLD condition will activate on the falling edge of the HOLD# signal if the CLK signal is already low. If the CLK is not already low the HOLD condition will activate after the next falling edge of CLK. The HOLD condition will terminate on the rising edge of the HOLD# signal if the CLK signal is already low. If the CLK is not already low the HOLD condition will terminate after the next falling edge of CLK. During a HOLD condition, the Serial Data Output (DO) is high impedance, and Serial Data Input (DI) and serial Clock (CLK) are ignored. The Chip Select (CS#) signal should be kept active (low) for the full duration of the HOLD operation to avoid resetting the internal logic state of the device. See Figure 7 for more details.

8.4

The device provides several means to protect the data from inadvertent writes.

Device resets when VCC is below threshold

users. A8D12C1BB012A

- Write enable/disable instructions and automatic write disable after erase or program
- Software and Hardware (WP# pin) write protection using Protection Register (SR-1)
- Lock Down write protection for Protection Register (SR-1) until the next power-up
- One Time Program (OTP) write protection for memory array using Protection Register (SR-1) •

After power-up the device is automatically placed in a write-disabled state with the Status Register Write L24FP Enable Latch (WEL) set to a 0. A Write Enable instruction must be instruction to the Block Erase instruction will be accepted. After completing a program or erase instruction the Write Enable Latch (WEL) is automatically cleared to a write-disabled state of 0.15°

Software controlled write protection is facilitated using the Write Status Register instruction and setting the Status Register Protect (BPRWD, SP) and Block Protect (TB, BP[3:0]) bits. These settings allow a portion or the entire memory array to be configured as read only. Used in conjunction with the WP# pin, changes to the Status Register can be enabled or disabled under hardware control. See Protection Register (SR-1) for further information. 2022-07-25

30124FB5

2022-07-25 09:56

2022-07-25 09:56

users.

9 Status Registers

Three Status Registers are: Protection Register (SR-1), Configuration Register (SR-2) and Status Register (SR-3). Each register is accessed by Get Feature (0Fh) and Set Feature (1Fh) commands combined with 1-Byte Register Address respectively.

Four Sector ECC Status Registers can be accessed by Get Feature (0Fh) command combined with 1-Byte Register Address respectively.

			10	ble 5 Status	Registers						
Deviator	Address		Data Bits								
Register	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Protection	A0h	BPRWD	BP3	BP2	BP1	BP0	TB	R	SP		
Configuration	B0h ()	OTP-L	OTP-E	R	ECC-E	R	DRV1	DRV0	QE		
Status	C0h	R	R	ECCS1	ECCS0	P-FAIL	E-FAIL	WEL	OIP		
Sector0 ECC Status	80h	R	R	0	0	S0ES3	S0ES2	S0ES1	S0ES0		
Sector1 ECC Status	84h	R	R	0	1	S1ES3	S1ES2	S1ES1	S1ES0		
Sector2 ECC Status	88h	R	R	1	0	S2ES3	S2ES2	S2ES1	S2ES0		
Sector3 ECC Status	8Ch	R	R	1	1	S3ES3	S3ES2	S3ES1	S3ES0		
Note [.]					L.V.	2					

Table 3 Status Registers

Note:

(1) R: Reserved Bit and has no function. They may be read out as a "0" or "1". It is recommended to ignore the values of those bits. During a Set Feature command, the Reserved Bits can be written as "0", but there will not be any effects.

The Reset command (FFh) will not clear the previous feature setting, the feature setting data bits remain until the power is being cycled or modified by the settings in the table below. After a Reset command is issued, the OIP bit will go high. This bit can be polled to determine when the Reset operation is complete, as it will return to the default value (0) after the reset operation is finished. Issuing the Reset command has no effect on the Block Protection and Configuration registers.

1 Acres 1 Acre	7 1
Table 4 Default Values of the Status Registers after power up and Device Res	h+ \-
Table 4 Delault values of the Status Registers after bower up and Device Res	ei
J	

Table + Deladit values of the olatas neglisters are power up and Device Reser									
Register	Address	Bits	Shipment Default	Power Up	After Reset Command				
		BP3-0,TB	11111	11111	No Change				
Protection	A0h	BPRWD	0.56	0	No Change				
		SP	25 63.	0	No Change				
	2 B0h	OTP-L	0	Locked:1, else 0	No Change				
		OTP-E	0	0	No Change				
Configuration		ECC-E	1	1	No Change				
-DO12AFDe		QE	0	0	No Change				
BBUI		DRV1-0	0 0	0 0	No Change				

Everything for Memory

Register	Address	Bits	Shipment Default	Power Up	After Reset Command	
		ECCS1-0	0 0	Status of Page0 of Block0	0 0	
		P-FAIL	0	0	0	
Status	C0h	E-FAIL	0	0	0	
		WEL	0	0	0	241
		OIP	0	0	OC1BBU	L -
Sector0 ECC Status	80h	S0ES3-0	0000	Status of Page0 of Block0	80000	
Sector1 ECC Status	84h	S1ES3-0	0000	Status of Page0 of Block0	0000	
Sector2 ECC Status	88h	S2ES3-0	0000	Status of Page0 of Block0	0000	
Sector3 ECC Status	8Ch	S3ES3-0	0000	Status of Page0 of Block0	0000	1

9.1 **Protection Register (SR-1)**

Block Protect Bits (BP3-0, TB) 9.1.1

The Block Protect bits (BP3-0, TB) are volatile read/write bits that provide Write Protection control and status. Block Protect bits can be set using the Set Feature Instruction. All, none or a portion of the memory array can be protected from Program and Erase instructions (See Table 6). The default values ers. A8D12C1BB012A for the Block Protection bits are 1 after power up to protect the entire array.

9.1.2 Status Register Protect Bits (BPRWD, SP)

The Status Register Protect bits (BPRWD, SP) are volatile read/write bits which control the method of write protection: software protection, hardware protection, power supply lock-down.

	BPRWD	SP	QE	WP#O	Descriptions	
	х	0	07-25	x	SR-1 can be changed No WP# functionality, WP# pin will always function as SIO2	
	Х	2944	Х	Х	SR-1 cannot be changed during the current power cycle]
	FB50	0	0	Х	SR-1 can be changed	100
20129	1	0	0	0	SR-1 can NOT be changed	ger,
2~	1	0	0	1	SR-1 can be changed	1
	NI. C.	•	•	•	Start.	-

Table 5 Status Register Protection

Note:

(1) When SP =1, a power-down, power-up cycle will change (BPRWD, SP) to (0, 0) state.

2022-07-25 09:56

D12C1BB0124FB5 Everything for Memory

9.1.3 **Status Register Memory Protection**

					Table 6 Bl	ock Protection Bits			
тв	BP3	BP2	BP1	BP0	PROTECTED BLOCK(S)	PROTECTED PAGE ADDRESS PA[16:0]	PROTECTED DENSITY	PROTECTED PORTION	124F
Х	0	0	0	0	NONE	NONE	NONE	NONE DD	
0	0	0	0	1	2047	1FFC0h – 1FFFFh	128KB	Oupper 1/2048	
0	0	0	1	0	2046 & 2047	1FF80h – 1FFFFh	256KB	Upper 1/1024	
0	0	0	1	1	2044 thru 2047	1FF00h – 1FFFFh	512KB	Upper 1/512	
0	0	1	0	0	2040 thru 2047	1FE00h – 1FFFFh	1MB	Upper 1/256	
0	0	1	0	1	2032 thru 2047	1FC00h – 1FFFFh	2MB	Upper 1/128	
0	0	1	1	0	2016 thru 2047	1F800h – 1FFFFh	4MB	Upper 1/64	
0	0	1	1	16	1984 thru 2047	1F000h – 1FFFFh	8MB	Upper 1/32	
0	1	0	00	. 0	1920 thru 2047	1E000h – 1FFFFh	16MB	Upper 1/16	
0	17	00	0	1	1792 thru 2047	1C000h – 1FFFFh	32MB	Upper 1/8	
02	<u>-</u> 71	0	1	0	1536 thru 2047	18000h – 1FFFFh	64MB	Upper 1/4	
0	1	0	1	1	1024 thru 2047	10000h – 1FFFFh	128MB	Upper 1/2	
1	0	0	0	1	0	00000h – 0003Fh	128KB	Lower 1/2048	
1	0	0	1	0	0 & 1	00000h – 0007Fh	256KB	Lower 1/1024	8012
1	0	0	1	1	0 thru 3	00000h – 000FFh	512KB	Lower 1/512	DO
1	0	1	0	0	0 thru 7	00000h – 001FFh	1MB	Lower 1/256	
1	0	1	0	1	0 thru 15	00000h – 003FFh	2MB cer	Lower 1/128	
1	0	1	1	0	0 thru 31	00000h – 007FFh	4MB	Lower 1/64	
1	0	1	1	1	0 thru 63	00000h – 00FFFh	8MB	Lower 1/32	1
1	1	0	0	0	0 thru 127	00000h – 01FFFh	16MB	Lower 1/16	1
1	1	0	0	1	0 thru 255	00000h – 03FFFh	32MB	Lower 1/8	1
1	1	0	1	0	0 thru 511	00000h – 07FFFh	64MB	Lower 1/4	
1	1	0	1	-10	20 0 thru 1023	00000h – 0FFFFh	128MB	Lower 1/2	
Х	1	30	2X	X	0 thru 2047	00000h – 1FFFFh	256MB	ALL	
		- 1 0			•	•		•	-

Note:

(2) If any Erase or Program command specifies a memory region that contains protected data portion, this command will be set so ignored.

9.2 **Configuration Register (SR-2)**

One Time Program Lock Bit (OTP-L) 9.2.1

OTP-L is non-volatile.

The device provides an OTP area for the system to store critical data that cannot be changed once it's locked. The OTP area consists of 62 pages of 2,112-Byte each. The default data in the OTP area are FFh, Only Program command can be issued to the OTP area to change the data from "1" to "0", and the

OTP area cannot be erased.

Once the correct data is programmed in and verified, the system developer can set OTP-L bit to 1, so D12C1BB0124FP that the entire OTP area will be locked to prevent further alteration to the data.

9.2.2 Enter OTP Access Mode Bit (OTP-E)

The OTP-E bit must be set to 1 in order to use the standard Program/Read commands to access the OTP area as well as to read the Unique ID / Parameter Page information. The default value after power up or a RESET command is 0.

9.2.3 ECC Enable Bit (ECC-E)

The device has a built-in ECC algorithm that can be used to preserve the data integrity. Internal ECC calculation is done during page programming, and the result is stored in the extra 64-Byte area for each page. During the data read operation, ECC engine will verify the data values according to the previously stored ECC information and to make necessary corrections if needed. The verification and correction status is indicated by the ECC Status Bits. ECC function is enabled by default when power on (ECC-E=1), and it will not be changed by the Device Reset command. rs. A8D12C1BB0124

9.2.4 **Output Driver Strength (DRV1-0)**

	Table 7 Ou	utput Driver	Strength	serp.
DRV1		DRV0		Output Driver Strength
0		0	西挖	100% (default)
0		1	7-1-	75%
1	56	0		50%
1	- 09:30	1		25%
	N			

22-07-23 Quad Enable Bit (QE) 9.2.5

The Quad Enable (QE) bit is a volatile bit, while it is "0" (factory default), it performs non-Quad and WP#, HOLD# are enabled. While QE is "1", it performs Quad I/O mode and WP#, HOLD# are disabled. In another word, if the system goes into four I/O mode (QE=1), the WP# and HOLD# function will be disabled. Upon power cycle, the QE bit will go into the factory default setting "0".

9.3 Status Register (SR-3)

9.3.1

ECC Status Bit (ECCS1-0) - 25 09:56 ECC function is used in NAND flash memory to correct limited memory errors during read operations. The ECC Status Bits (ECCS1, ECCS0) should be checked after the completion of a Read operation to verify the data integrity. The ECC Status bits values are don't care if ECC-E=0. These bits will be cleared to 0 after a RESET command.

The ECCS1-0 value reflects the ECC status of the content of the page 0 of block 0 after a power-on reset.

		Table 8 ECC Bits Status
ECCS1	ECCS0	Description
0	0	No bit errors were detected during the previous read operation
0	1	1-bit error was detected in one or more sector and was corrected
1	Х	More than 1-bit error was detected in one or more sector and cannot be corrected

Program/Erase Failure (P-FAIL, E-FAIL) 9.3.2

The Program/Erase Failure Bits are used to indicate whether the internally-controlled Program/Erase operation was executed successfully or not. P-FAIL bit will also be set when the Program command is issued to a protected block or locked OTP area, and E-FAIL bit will also be set when the Erase command is issued to a protected block. Both bits will be cleared at the beginning of the Program Execute or Block Erase instructions as well as the device Reset command.

9.3.3 Write Enable Latch (WEL)

Write Enable Latch (WEL) is a read only bit. The WEL bit is set to 1 after executing a Write Enable Instruction. The WEL bit is cleared to 0 when the device is write disabled. A write disable state occurs upon power-up or after any of the following instructions: Write Disable, Program Execute, Block Erase, Page Data Read, and Program Execute for OTP pages.

Operation in Progress (OIP) 9.3.4

OIP is a read only bit that is set to a 1 state when the device is powering up or executing a Page Read, Program Execute, Block Erase and OTP Locking. During this time the device will ignore further instructions except for the Get Feature or Soft Reset instructions. When the program, erase or page read instruction has completed, the OIP bit will be cleared to a 0 state indicating the device is ready for further instructions. users.

Sector ECC Status Register (Sector ECC Status0-3) 9.4

A sector is composed by a 512 Byte main areas and a 16 Byte spare area, so a page has four sectors. The Sector ECC Status Register indicates the number of errors in each sector as identified from an ECC check during a read operation.

			•	. V) U			
1 st Main	2 nd Main	3 rd Main	4 th Main	1 st Spare	2 nd Spare	3 rd Spare	4 th Spare
512B	512B	512B	512B	16B	16B	16B	16B
	-25	20'24 Tabl	le 10 Definition	of 528Btye Sec	ctor		
124	4D0			Column Ad	ldress (Byte)		
pR0103	ector		Main Field			Spare Field	

Table 9 2Kbyte Page Assignment

Everything for Memory

1 st Sector	0 ~ 511	2,048 ~ 2,063
2 nd Sector	512 ~ 1,023	2,064 ~ 2,079
3 rd Sector	1,024 ~ 1,535	2,080 ~ 2,095
4 th Sector	1,536 ~ 2,047	2,096 ~ 2,111

Table 11 ECC Status Register0-3

4 th \$	Sector		1,536 ~ 2,04	7		2,096 ~ 2,111	
		Ta	able 11 ECC St	atus Register0-	}	oc 1BBC	1241
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1 Bit0	
Rese	erved	Sector In	formation		Sector E	CC Status	
					US	6.5	

9.4.1 **Sector Information**

Table 12 Sector Information

	Bit 5 ~ Bit 4	Sector Information
	00	1 st Sector (Main and Spare area)
	015 09	2 nd Sector (Main and Spare area)
	07-01 10	3 rd Sector (Main and Spare area)
2	11	4 th Sector (Main and Spare area)

9.4.2 Sector ECC Status

Table 13 Sector ECC Status Sector ECC Status
No bit error was detected during the previous read operation 1500
1 bit error was detected in the sector and was corrected
More than 1 bit errors were detected in the sector and cannot be corrected
Reserved

D12C1BB0124FB5 Everything for Memory

30124FB5

2022-07-25 09:56

users.

Commands 10

10.1 Command Set

10.1 Command Set	Table	e 14 Comman	d Set		-16	2C1BB0	1241
Commands	Byte1	Byte2	Byte3	Byte4	Byte5	ByteN	
Soft RESET	FFh			user	D•		
Read JEDEC ID	9Fh	Dummy	MID	DID	DID		
Get Feature	0Fh	SR Addr	S7-0	S7-0	S7-0	S7-0	
Set Feature	1Fh	SR Addr	S7-0				
Write Enable	06h						
Write Disable	04h						
Block Erase 25	D8h	PA23-16	PA15-8	PA7-0			
Program Data Load	02h	CA15-8	CA7-0	D7-D0	Next Byte		
Random Program Data Load	84h	CA15-8	CA7-0	D7-D0	Next Byte		
Quad Program Data Load	32h	CA15-8	CA7-0	D7-D0 / 4	Next Byte		. 0
Random Quad Program Data Load	34h	CA15-8	CA7-0	D7-D0 / 4	Next Byte	TO 1B	3012
Program Execute	10h	PA23-16	PA15-8	PA7-0	181	012012	
Page Read (to cache)	13h	PA23-16	PA15-8	PA7-0	ors. no		
Read From Cache	03h or 0Bh	CA15-8	CA7-0	Dummy	D7-D0	Next Byte	
Read From Cache x 2	3Bh	CA15-8	CA7-0	Dummy	D7-D0 / 2	Next Byte	
Read From Cache x 4	6Bh	CA15-8	CA7-0	Dummy	D7-D0 / 4	Next Byte	

Note:

(1) Output designates data output from the device.

(2) Column Address (CA) only requires CA [11:0], CA [15:12] are considered as dummy bits.

(3) Page Address (PA) only requires PA [16:0], PA [23:17] are considered as dummy bits. PA [16:6] is the address for 128kB blocks (total 2,048 blocks), PA [5:0] is the address for 2kB pages (total 64 pages for each block). users.

(4) Dual SPI Data Output (D7-0 / 2) format:

SIO0 = D6, D4, D2, D0...

SIO1 = D7, D5, D3, D1...

(5) Quad SPI Data Input / Output (D7-0 / 4) format:

SIO0 = D4, D0 ...

SIO1 = D5, D1 ...

SIO2 = D6, D2 ...

SIO3 = D7, D3 ...

25 09:56 (6) All Quad Program/Read commands are disabled when QE bit is set to 0 in the Configuration Register

D12C1BB0124FB5 Everything for Memory

24FF

10.2 Soft Reset (FFh)

Once the Reset command is accepted by the device, the device will take approximately tRST to reset, depending on the current operation the device is performing, tRST can be 5us~200us. During this period, no command will be accepted.

Data corruption may happen if there is an on-going internal Erase or Program operation when Reset command is accepted by the device. It is recommended to check the OIP bit in Status Register before issuing the Reset command.

Figure 8 Soft Reset Sequence

Everything for Memory

10.3 Read JEDEC ID (9Fh)

The Read JEDEC ID instruction is compatible with the JEDEC standard for SPI compatible serial memories that was adopted in 2003.

	Table 15 JEDEC ID	212C1Bb0
1	D	Value
Manufa	cture ID	11Ser S. CDh
Device ID	Byte 1	72h
Device ID	Byte 2	72h

Figure 9 Read JEDEC ID

10.4 Feature Operations

10.4.1 Get Feature (0Fh) and Set Feature (1Fh)

The Get Feature (0Fh) and Set Feature (1Fh) commands are used to monitor the device status and alter the device behavior. These commands use a 1-byte feature address to determine which feature is to be read or modified. Features such as OTP and block locking can be enabled or disabled by setting specific feature bits. The status register is mostly read, except WEL, which is a writable bit with the Write Enable (06h) and Write Disable (04h) command. When a feature is set, it remains active until the device is power cycled or the feature is written to. Unless otherwise specified, once the device is set, it remains set, even if a RESET (FFH) command is issued. Refer to **Status Registers** for detail information.

2022-07-25 09:56

09:56

D1201BB0124FB5 Everything for Memory

Figure 10 Get Feature

Figure 11 Set Feature

10.4.2 Write Enable (WREN, 06h)

The Write Enable (WREN, 06h) command is for setting Write Enable Latch (WEL) bit. The WEL bit must be set prior to every Page Program, Block Erase and OTP.

Everything for Memory

10.4.3 Write Disable (WRDI, 04h)

The Write Disable (WRDI, 04h) instruction is to reset Write Enable Latch (WEL) bit. Note that the WEL bit is automatically reset after Power-up and upon completion of the Page Program, Block Erase, and Reset commands.

10.5 Read Operations

2C1BB0124 The device supports Power-on Read function, after power up, the device will automatically load the data of the 1st page of 1st block from array to cache. The host micro-controller may directly read the 1st page of 1st block data from the cache buffer.

10.5.1 Page Read (13h)

The page read operation transfers data from array to cache by issuing the Page Read (13h) command followed by the 24-bit address (including the dummy/block/page address).

The device will have a period of time (t_{RD} or t_{RD_ECC}) being busy after the CS# goes high. The Get Feature users. command may be used to poll the operation status.

After read operation is completed, the Read from Cache (03h or 0Bh), Read from cache (x2) (3Bh), Read from cache (x4) (6Bh) may be issued to fetch the data.

2022-07-25 09:56

D12C1BB0124FB5 Everything for Memory

Figure 14 Page Read Sequence

10.5.2 Read From Cache (03h or 0Bh)

The Read From Cache command allows one or more data bytes to be sequentially read from the Data Buffer after executing the Read Page command.

10.5.3 Read From Cache x 2 (3Bh)

The Read From Cache x 2 (3Bh) command is similar to the Read From Cache (03h or 0Bh) command

except that data is output on two pins: SIO0 and SIO1. This allows data to be transferred at twice the rate of standard SPI devices.

10.5.4 Read From Cache x 4 (6Bh)

The Read From Cache x 4 (6Bh) command is similar to the Read From Cache x 2 (3Bh) command users. A8D12C1BB012A except that data is output on four pins: SIO0, SIO1, SIO2 and SIO3. This allows data to be transferred at four times the rate of standard SPI devices.

When QE bit in the Status Register is set to a 0, this command is disabled.

		Figure 18 Read From Cache x4 (6Bh) Sequence	
	CS#	受控	
	CLK		
	DI (SIO0)	$\frac{1}{2} \frac{6Bh}{15} \frac{15}{14} \frac{13}{13} \frac{2}{10} \frac{2}{10} \frac{1}{10} \frac{1}{10$	
	DO (SIO1)	High Impedance 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	
30124	WP# (SIO2)	High Impedance	<u>c</u> s.
	HOLD# (SIO3)	High Impedance 7 3 7 3 7 3 7 3 7	
	()	★=MSB ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★	

10.6 Program Operations 09:56 10.6.1 Page Program 2022-07-25

The Page Program operation sequence programs 1 byte to 2112 bytes of data within a page. The page program sequence is as follows:

- 1. Issue Program Data Load (02h) / Program Data Load x4 (32h)
- 2. Issue Write Enable command (06h)
- Issue Program Execute command (10h) 3.
- Issue Get Feature command (0Fh) to read the status 4.

10.6.2 Program Data Load (02h) / Random Program Data Load (84h)

12C1BB0124FP The Program Data Load or Random Program Data Load command is used to load the program data into the data buffer. The command is initiated by driving the CS# pin low then shifting the command code "02h" or "84h" followed by a 16-bit column address (only CA[11:0] is effective) and at least one byte of data into the DI pin. The CS# pin must be held low for the entire length of the instruction while data is being sent to the device. If the number of data bytes sent to the device exceeds the number of data bytes in the Data Buffer, the extra data will be ignored by the device.

The Program Load Data command has to be issued prior to Random Program Load Data command for random page program. The difference is that Program Load Data command will reset the unused the data bytes in the Data Buffer to FFh value, while Random Program Load Data command will only update the data bytes that are specified by the command input sequence, the rest of the Data Buffer will remain unchanged.

10.6.3 Program Data Load x 4 (32h) / Random Program Data Load x 4 (34h)

The Program Data Load x 4 and Random Program Data Load x 4 commands are similar to the Program Load Data and Random Program Load Data, the only difference is that "x4" commands will input the data bytes from all four IO pins instead of the single DI pin. This method will significantly shorten the data input time when a large amount of data needs to be loaded into the Data Buffer.

The Program Data Load x 4 command has to be issued prior to Random Program Data Load x 4 command for random page program. The difference is that Program Data Load x 4 command will reset the unused data bytes in the Data Buffer to FFh value, while Random Program Data Load x 4 instruction will only update the data bytes that are specified by the command input sequence, the rest of the Data Buffer will remain unchanged.

When QE bit in the Status Register is set to 0, all Quad SPL instructions are disabled.

Figure 20 (Random) Program Data Load x4 Sequence

10.6.4 Program Execute (10h) 9.56

The Program Execute command will program the Data Buffer content into the physical memory page that is specified in the command. Prior to performing the Program Execute operation, a Write Enable (06h) command must be issued to set the WEL bit.

The Program Execute command is initiated by driving the CS# pin low then shifting the instruction code "10h" followed by 7-bit dummy clocks and the 17-bit Page Address into the DI pin.

After CS# is driven high to complete the instruction cycle, the self-timed Program Execute instruction will commence for time duration of t_{PROG} or t_{PROG_ECC}. While the Program Execute cycle is in progress, the Get Feature command (0Fh) may be used for checking the status of the OIP bit. The OIP bit is a 1 during the Program Execute cycle and becomes a 0 when the cycle is finished and the device is ready to accept other instructions again. After the Program Execute cycle has finished, the Write Enable Latch (WEL) bit in the Status Register is cleared to 0. The Program Execute command will not be executed if the addressed page is protected by the Block Protect (TB, BP3, BP2, BP1, and BP0) bits. Only 4 partial page program times are allowed on every single page.

The pages within the block have to be programmed sequentially from the lower order page address to the higher order page address within the block. Programming pages out of sequence is prohibited.

10.6.5 Internal Data Move

The Internal Data Move command sequence programs or replaces data in a page with existing data. The users. A8D12C1BB012A sequence is as follows:

- 1. Issue Page Read command (13h)
- 2. Program Load Random Data (Optional)
- Issue Write Enable command (06h) 3.
- 4. Issue Program Execute command (10h)
- 5. Issue Get Feature command (0Fh) to read the status

Prior to performing an internal data move operation, the target page content must be read out into the cache register by issuing a Page Read (13h) command. One or more Program Load Random Data (84h/34h) command can be issued, if user wants to update bytes of data in the page. After the data is loaded, the Write Enable command (06h) and the Program Execute (10h) command can be issued to start the program operation.

10.7 Block Erase Operations

The Block Erase instruction sets all memory within a specified block to the erased state of all 1s (FFh). A Write Enable command must be executed before the device will accept the Block Erase Instruction (Status Register bit WEL must equal 1). The command is initiated by driving the CS# pin low and shifting the command code "D8h" followed by 7-bit dummy clocks and the 17-bit page address. , ck 2022-07-25 09:

D12C1BB0124FB5 Everything for Memory

users.

Figure 22 Block Erase Sequence

10.8 UID / Parameter / OTP Pages

In addition to the main memory array, the device has one Unique ID Page, one Parameter Page, and sixty-two OTP Pages.

2	Page Address PA[15:0]	Page Name	Descriptions	Data Length	
	00_00h	Unique ID Page	Factory programmed, Read Only	32-Byte x 16	
	00_01h	Parameter Page	Factory programmed, Read Only	256-Byte x 3	-012
	00_02h	OTP Page [0]	Program Only, OTP lockable	2,112-Byte	301-
		OTP Pages [1:60]	Program Only, OTP lockable	2,112-Byte	
	00_3Fh	OTP Page [61]	Program Only, OTP lockable	2,112-Byte	

Table 16 UID / Parameter / OTP Pages

Unique ID Page: To accommodate robust retrieval of the UID in the case of bit errors, sixteen copies (each copy has 32 bytes) of the UID and the corresponding complement are stored. On each 32-byte, the first 16-byte and following 16-byte are complementary. If the XOR of the UID and its bit-wise complement is all ones, then the UID is valid.

Parameter Page: Contains at least three identical copies of the 256-Byte Parameter Data.

To access these additional data pages, the OTP-E bit in Configuration Register (SR-2) must be set to "1" first. Then, Read operations can be performed on Unique ID and Parameter Pages, Read and Program operations can be performed on the OTP pages if it's not already locked. To return to the main memory array operation, OTP-E bit needs to be to set to 0.

10.8.1 Read UID / Parameter / OTP Pages

The Read UID / Parameter / OTP pages sequence is as follows:

- 1. Issue Set Feature command (1Fh) to set OTP-E=1.
- 2. Issue Page Read command (13h) with address shown in the table above.
- 3. Issue Get Feature command (0Fh) to read the status.
- 4. Issue Read from cache command (03h/0Bh/3Bh/6Bh) to read data.

Note:

- (1) For OTP pages, Internal ECC can be enabled for the OTP page read operations to ensure the data integrity.
- When reading UID / Parameter page, Internal ECC is disabled by the chip. (2)

10.8.2 Program OTP Pages and OTP Lock Operation

BB0124FP OTP pages provide the additional space (2K-Byte x 62) to store important data or security information that can be locked to prevent further modification in the field. These OTP pages are in an erased state set in the factory, and can only be programmed (change data from "1" to "0") until being locked by OTP-L bit in the Configuration Register (SR-2).

The Program OTP Pages sequence is as follows:

- 1. Issue Set Feature command (1Fh) to set OTP-E=1
- Issue WREN command (06h) to set WEL bit 2.
- 3. Issue Program Data Load and Program Execute command
- 4. Issue Get Feature command (0Fh) to read the status.

When ECC is enabled, ECC calculation will be performed during Program Execute.

Once the OTP pages are correctly programmed, OTP-L bit can be used to permanently lock these pages por 24 so that no further modification is possible. The OTP Lock sequence is as follows: 1. Issue Set Feature command (1Fh) to set OTP-E=1 and OTP-L=1

- Issue Set Feature command (1Fh) to set OTP-E=1 and OTP-L=1
- 2. Issue WREN command (06h) to set WEL bit
- Issue Program Execute command (10h), page address is "don't care" 3.
- 4. Issue Get Feature command (0Fh) to read the status.
- Issue Set Feature command (1Fh) to set OTP-E=0, return to the main memory array operation. 5.

10.8.3 Parameter Page Data Definition

Byte Number	Descriptions	Values US
0~3	Parameter Page Signature, "ONFI" ASCII characters	4Fh 4Eh 46h 49h
4~5	Revision Number	00h 00h
6~31	Reserved (0)	all 00h
		46h 4Fh 52h 45h
32~43	Device manufacturer, 12 ASCII characters	53h 45h 45h 20h
	09:00	20h 20h 20h 20h
	07-20	46h 33h 35h 53h
	2022-01	51h 41h 30h 30h
44-63	Device Model, 20 ASCII characters	32h 47h 20h 20h
19AF	BD	20h 20h 20h 20h
BBOLL		20h 20h 20h 20h

Everything for Memory

Byte Number	Descriptions	Values
64	JEDEC MID	CDh
65-66	Date Code	00h 00h
67-79	Reserved (0)	all 00h
80-83	Number of Data Bytes per Page	00h 08h 00h 00h
84-85	Number of Spare Bytes per Page	00h 08h 00h 00h 40h 00h 00h 02h 00h 00h
86-89	Number of Data Bytes per Partial Page	00h 02h 00h 00h 80
90-91	Number of Spare Bytes per Partial Page	10h 00h r S . 100
92-95	Number of Pages per Block	40h 00h 00h 00h
96-99	Number of Block per Logic Unit	00h 08h 00h 00h
100	Number of Logic Units	01h
101	Reserved (0)	00h
102	Number of Bits per Cell	01h
103-104	Bad Blocks Maximum per Logic Unit	28h 00h
105-106 05	Block Endurance	01h 05h
107	Guaranteed Valid Blocks at Beginning of Target	01h
108-109	Block Endurance for Guaranteed Valid Blocks	01h 03h
110	Number of Programs per Page	04h
111	 Partial Programming Attributes b5-b7 reserved (0) b4 1 = partial page layout is partial page data followed by partial page spare b1-b3 reserved (0) b0 1 = partial page programming has constraints > 	ooh users. A8D12C1F
112	Number of ECC Bits Correctability	00h
113-127	Reserved (0)	all 00h
128	I/O Pin Capacitance, Maximum	08h
129-132	Reserved (0)	all 00h
133-134	t _{PROG} Maximum Page Program Time (us)	BCh 02h
135-136 20	t _{ERS} Maximum Block Erase Time (us)	10h 27h
B 137-138	t _{RD} Maximum Page read Time (us)	3Ch 00h
139-163	Reserved (0)	all 00h
164-165	Vendor Specific Revision Number	00h 00h
166-253	Vendor Specific	all 00h
254-255	Integrity CRC	1Fh 84h
256-511	Value of Bytes 0-255	
512-767	Value of Bytes 0-255	
768+	Additional Redundant Parameter Pages	

(1) The Integrity CRC (Cycling Redundancy Check) field is used to verify that the contents of the parameters page were transferred correctly to the host. Please refer to ONFI 1.0 specifications for details. The CRC shall be calculated using the following 16-bit generator polynomial: G(X) = X16 + X15 + X2 + 1 D12C1BBO

Software Algorithm 11

11.1 Initial Invalid Block(s)

30124FP Initial invalid blocks are defined as blocks that contain one or more initial invalid bits whose reliability is not guaranteed. Devices with initial invalid block(s) have the same guality level as devices with all valid blocks and have the same electrical characteristics. An initial invalid block(s) does not affect the performance of valid block(s). The system design must be able to mask out the initial invalid block(s) via address mapping. The 1st block, which is placed on 00h block address, is guaranteed to be a valid block at the time of shipment.

Table 18 Valid	Block Number
----------------	---------------------

Parameter	Symbol	Min	Max	Unit
Valid block number	0.50 Nvb	2008	2048	Blocks

2.2-07-25 211.2 Identifying Initial Invalid Block(s)

All device locations are erased (FFh) except locations where the initial invalid block(s) information is written prior to shipping. All initial invalid blocks are marked with non-FFh at the first byte of spare area on the 1st or 2nd page. Since the initial invalid block information is also erasable in most cases, it is impossible to recover the information once it has been erased. Therefore, the system must be able to recognize the initial invalid block(s) based on the original initial invalid block information and create the initial invalid block table via the suggested flow (Figure 23). Any intentional erasure of the original initial invalid block information is prohibited.

11.3 Error in Operation

Within its life time, additional invalid blocks may develop with NAND Flash memory. The following possible failure modes should be considered to implement a highly reliable system. In the case of status read failure after erase or program, block replacement should be done. Because program status fail during a page program does not affect the data of the other pages in the same block, block replacement can be executed with a page-sized buffer by finding an erased empty block and reprogramming the current target data and copying the rest of the replaced block. In case of Read, ECC must be employed. To improve the efficiency of memory space, it is recommended that the read or verification failure due to single bit error be reclaimed by ECC without any block replacement. The said additional block failure rate does not include those reclaimed blocks.

Note: When copy operation is executed without re-loading program data, the MSB of destination block address (PA[16]) must be the same as that of source block address.

	-07-20	Table 19 Failure Modes
2	Operation	Detection and recommended procedure
	Erase	Status read after erase \rightarrow Block Replacement
	Program	Status read after program \rightarrow Block Replacement
	Read	Verify ECC \rightarrow ECC correction

Everything for Memory

11.4 Internal ECC

The internal ECC logic may detect 2-bit error and correct 1-bit error in an ECC segment. An ECC segment is composed by a main area (512 Byte) and a spare area (16 Byte). The default state of the internal ECC is enabled. To enable/disable the internal ECC, it is operated by the Set Feature operation to enable internal ECC or disable the internal ECC, and then check the internal ECC state by Get Feature operation.

The internal ECC is enabled by using Set Feature command (1Fh) to set ECC-E. To disable the internal ECC can be done by using the Set Feature command (1Fh) to clear ECC-E.

When the internal ECC is enabled, after the data transfer time (t_{RD ECC}) is completed, a Status Read operation is required to check any uncorrectable read error happened. Please refer to Status Register (SR-3). 00.

The number of partial-page program is not 4 in an ECC segment, the user need to program the main area (512B) and spare area (16B) at one program time, so the ECC parity code can be calculated properly and stored in the additional hidden spare area. A8D12C1BB0124

11.5 Addressing for Program Operation

Within a block, the pages must be programmed consecutively from the LSB (least significant bit) page of the block to the MSB (most significant bit) pages of the block. The LSB page is defined as the start page among the pages to be programmed, does not need to be page 0 in the block. Random page address programming is prohibited.

Figure 25 Addressing for Program Operation

Electrical Characteristics 12

FORESEE

12.1 Absolute Maximum Ratings

Absolute Maximum Ratings Table 20 Absolute M	aximum Rating	4.6	CIBB01
Parameters	Symbol	Range	Unit
Supply Voltage	V _{cc}	-0.6 to +4.6	V
Voltage Applied to Any Pin	V _{IO}	–0.6 to V _{cc} +0.4	V
Temperature under Bias	TBIAS	-40 to +125	°C
Storage Temperature	T _{STG}	-65 to +150	°C
Short circuit output current, I/Os	I _{OS}	5	mA

Note:

- (1) Minimum DC voltage is -0.6V on input/output pins. During transitions, this level may undershoot to -2.0V for periods <30ns.Maximum DC voltage on input/output pins is VCC+0.3V which, during transitions, may overshoot to VCC+2.0V for periods <20ns.
- (2) Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating users. A8D12C1BB012A conditions for extended periods may affect reliability.

12.2 Operating Ranges

	lab	ble 21 Operating Ranges			
Parameters	Symbol	Conditions	Min	Max	Unit
Supply Voltage	V _{cc}		2.7	3.6	V
Ambiant Tomporatura	CTA D	Industrial	-40	+85	°C
Ambient Temperature	D VM	Industrial plus	-40	+105	°C
02-01					

12.3 Power-up and Power-down Timing Requirements

			L	
Parameters	Symbol	Min	Max	Unit
$V_{CC}(min)$ to read Status Register is allowed	t _{VSL}	200		μs
Time delay before device fully accessible	t _{PUW}	1		ms
Note: (1) These parameters are characterized only. 09.5 2022-07-25	6			

D12C1BB0124FB5 Everything for Memory

Figure 26 Power-up Timing

Figure 27 Power-up and Power-down Requirements

12.4 Pin Capacitance

Table 23 Pin Capacitance

Parameters	Symbol	Min	Мах	Unit
Input / Output Capacitance	CIO		8	pF
Input Capacitance	C _{IN}		8	pF

Note:

D12(

(1) Test conditions: TA=25°C, F=1MHz, V_{IN}=0V, V_{CC}=3V

(2) These parameters are characterized only.

12.5 DC Electrical Characteristics

		Table 24 DC Electrical Characteristics				
Deremetere	Symbol	Conditions		SPEC ⁽¹⁾		Unit
Parameters	Symbol	Conditions	Min	Тур	Max	Four
Standby Current	I _{CC1}	CS# = V_{CC} , V_{IN} = GND or V_{CC}	1 C F	Y 90	50	μA
Page Read Current	I _{CC2}		U.S.	10	25	mA
Program Current	I _{CC3}	to the		15	25	mA
Erase Current	I _{CC4}	17 II		15	25	mA
Input Leakage Current	ILI	$V_{IN} = GND \text{ or } V_{CC}$			±2	μA
Output Leakage Current	ILO	$V_{OUT} = GND \text{ or } V_{CC}$			±2	μA
Input Low Voltage	.50L		-0.3		$0.2V_{CC}$	V
Input High Voltage	VIH		0.8V _{CC}		V _{cc} +0.3	V
Output Low Voltage	V _{OL}	I _{OL} = 2.1mA			0.4	V
Output High Voltage	V _{OH}	I _{OH} = -400μA	2.4			V

Note:

users. A8D12C1BB012A (1) Applicable over recommended operating range from: $T_A = -40^{\circ}C$ to $+85^{\circ}C$, VCC= 2.7V to 3.6V, unless otherwise noted.

12.6 AC Measurement Conditions

Table 25 AC Measurement Conditions

Parameters	Symbol	Min	Max	Unit
Load Capacitance	CL		30	pF
Input Rise Time	t _R		2.5	ns
Input Fall Time	tF		2.5	ns
Input Pulse Voltages	V _{IN}	0 to	Vcc	V
Input Timing Reference Voltages	IN	0.5	V _{cc}	V
Output Timing Reference Voltages	OUT	0.5	Vcc	V 11

12.7 AC Electrical Characteristics

Table 26 AC Electrical Characteristics

B arrana F G	Cumhal		SPEC ⁽¹⁾		l Init
Parameters	Symbol	Min	Тур	Max	Unit
Clock frequency	F _R			104	MHz
Clock High, Low Time for all commands	$t_{CLH}, t_{CLL}^{(2)}$	4			ns
Clock Rise Time	t _{CLCH} ⁽³⁾	0.1			V/ns
Clock Fall Time	t _{CHCL} ⁽³⁾	0.1			V/ns
Data In Setup Time	t _{DVCH}	3			ns

Everything for Memory

Devenuetore	Sumbal		SPEC ⁽¹⁾			
Parameters	Symbol	Min	Тур	Max	Unit	
Data In Hold Time	t _{CHDX}	3			ns	
Clock Low to Output Valid	t _{CLQV}			8	ns	
Output Hold Time	t _{CLQX}	2			ns	124
Output Disable Time	t _{SHQZ} ⁽³⁾			20	Ins	
CS# active Setup Time	t _{SLCH}	5	A	BUIL	ns	
CS# active Hold Time	t _{снsн}	5	rs.		ns	
CS# non-active Setup Time	t _{shCh}	5			ns	
CS# non-active Hold Time	tchsL	5			ns	
CS# deselect Time	tshsl	20			ns	
HOLD# active Setup Time	t _{HLCH}	5			ns	
HOLD# active Hold Time	t _{сннн}	5			ns	
HOLD# non-active Setup Time	t _{ннсн}	5			ns	
HOLD# non-active Hold Time	t _{CHHL}	5			ns	
HOLD# to Output Low-Z	t _{HHQX} ⁽³⁾			25	ns	
HOLD# to Output High-Z	t _{HLQZ} ⁽³⁾			25	ns	1
WP# Setup Time before CS# Low	t _{WHSL}	20			ns	
WP# Hold Time after CS# Low	t _{SHWL}	100			ns	201
Device reset time (Read/Program/Erase)	t _{RST} ⁽³⁾			5/20/200	μsB	BUI
Note:				, en1	201	-

81)14 (1) Applicable over recommended operating range from: $T_A = -40^{\circ}C$ to $+85^{\circ}C$, VCC= 2.7V to 3.6V, unless otherwise noted.

 $t_{CLH} + t_{CLL} \le 1/F_R$ (2)

These parameters are characterized only. (3)

12.8 Read / Program / Erase Characteristics

Table 27 Read / Program / Erase	Characteristics

Cumhal	SPEC ⁽¹⁾			l locit	
Symbol	Min	Тур	Max	Unit	
t _{RD}			25	μS	01
led t _{RD_ECC}		50	60	μsUS	361
t _{PROG} ⁽²⁾		350	700	μS	
t _{PROG_ECC} ⁽²⁾		380	750	μS	
t _{ERS}		2	10	ms	
NOP			4	cycles	1
	trd trd_ECC tprog ⁽²⁾ tprog_ECC ⁽²⁾ tprog_ECC ⁽²⁾ ters	Min tRD led tRD_ECC tPROG ⁽²⁾ tPROG_ECC ⁽²⁾ tERS	SymbolMinTyp t_{RD} -led $t_{RD_{ECC}}$ 50 $t_{PROG}^{(2)}$ 350 $t_{PROG_{ECC}}^{(2)}$ 380 t_{ERS} 2	SymbolMinTypMax t_{RD} 25led t_{RD_ECC} 5060 $t_{PROG}^{(2)}$ 350700 $t_{PROG_ECC}^{(2)}$ 380750 t_{ERS} 210	$\begin{tabular}{ c c c c c } \hline Symbol & \hline Min & Typ & Max \\ \hline Min & Typ & Max \\ \hline Min & Typ & Max \\ \hline 25 & \mus \\ 25 & \mus \\ 100 & 100 & 100 & 100 \\ \hline 100 & 100 & 100 & 100 \\ $

Note:

09.0 (1) Applicable over recommended operating range from: $T_A = -40^{\circ}C$ to $+85^{\circ}C$, VCC= 2.7V to 3.6V, unless otherwise noted.

(2) Typical program time is defined as the time within which more than 50% of the whole pages are programmed at 3.3V and D12C1BB0124FB5 25°C.

Everything for Memory

Timing Diagram 13

Everything for Memory

Figure 31 WP# Timing

D12C1BB0124FB5 Everything for Memory

30124FB5

2022-07-25 09:56

2022-07-25 09:56

users.

14 Packaging Information

14.1 8-WSON (8x6mm)

Everything for Memory

15 **Part Marking Scheme**

2022-07-25 09:56

15.1 8-WSON (8x6mm)

D12C1BB0124FB5 Everything for Memory

30124FB5

2022-07-25 09:56

users.