
AT89LP 
In-System 
Programming

Application 
Note

 3593A–MICRO–7/06
AT89LP In-System Programming Specification

1. Overview
The Atmel AT89LP microcontrollers feature 2K bytes to 64K bytes of on-chip Flash
program memory. Some devices may also support Flash data memory. In-System
Programming (ISP) allows programming and reprogramming of any AT89LP micro-
controller positioned inside the end system. Using a simple 4-wire SPI interface, the
In-System programmer communicates serially with the AT89LP microcontroller, repro-
gramming all nonvolatile memories on the chip. In-System programming eliminates
the physical removal of chips from the system. This will save time, and money, both
during development in the lab, and when updating the software or parameters in the
field. This application note describes how to program the Flash program or data mem-
ory on an AT89LP microcontroller using the In-System programming interface. This
document applies to all AT89LP microcontrollers with 64K bytes or less of code mem-
ory with the exception of AT89LP2052 and AT89LP4052, which follow a slightly
different ISP protocol (see “Programming the AT89LP2052/LP4052” on page 27).

2. The Programming Interface
In-System programming utilizes the Serial Peripheral Interface (SPI) of an AT89LP
microcontroller. The SPI is a full-duplex synchronous serial interface consisting of four
wires: Serial Clock (SCK), Master-In/Slave-Out (MISO), Master-Out/Slave-In (MOSI),
and an active-low Slave Select (SS). Note: The AT89LP ISP interface uses the SPI clock

mode 0 (CPOL = 0, CPHA = 0) exclusively. When programming an AT89LP device, the
programmer always operates as the SPI master, and the target system always oper-
ates as the SPI slave. To enter or remain in In-System programming mode the
device’s reset line (RST) must be held active (low). With the addition of VCC and
GND, an AT89LP microcontroller can be programmed with a minimum of seven con-
nections as shown in Figure 2-1 and Table 2-1.

Table 1-1. AT89LP Family Features

Four-Wire SPI Programming Interface

Active-low Reset Entry into Programming

Slave Select Allows Multiple Devices on Same Interface

Programming Support for up to 64K Bytes of Code Memory

Programming Support for up to 64K Bytes of Data Memory

User Signature Row

Flexible Page Programming

Row Erase Capability

Page Write with Auto-Erase Command

Programming Status Register



Figure 2-1. Device Connections Required for Programming

The In-System programming Interface is the only means of externally programming an AT89LP
microcontroller. The ISP Interface can be used to program a device both in-system and in a
stand-alone serial programmer. The ISP Interface does not require any clock other than SCK
and is not limited by the system clock frequency. During In-System programming, the system
clock source of the target device can operate normally. For stand-alone programmers the
XTAL1 pin should be driven low to prevent the oscillator input from floating. 

Table 2-1. Connections Required for Programming

Pin Name Comment

SCK (P1.7) Serial Clock
Programming clock generated by the programmer (master). Serial 
bits on MISO are output on the falling edge of SCK. Serial bits on 
MOSI are sampled at the rising edge of SCK.

MISO (P1.6) Serial Output
Communication line from the target AT89LP being programmed 
(slave) to the programmer (master).

MOSI (P1.5) Serial Input
Communication line from the programmer (master) to the target 
AT89LP being programmed (slave).

SS (P1.4) Slave Select
Active-low select of the target AT89LP being programmed. Must 
be driven low to enable communication on the SPI pins.

RST Reset
To enable In-System programming, the reset of the target AT89LP 
must be kept active. To simplify this, the In-System programmer 
should control the target Reset.

GND Ground
The programmer and target AT89LP systems must share the 
same common ground to ensure correct communication.

VCC Power Supply

To allow programming of targets operating at any voltage, the In-
System programmer can draw power from the target. Alternatively, 
the target can have power supplied through the In-System 
programming connector for the duration of the programming cycle

AT89LP

VCC

RST

P1.7/SCK

P1.5/MOSI

GND

Serial Clock

Serial-In

RST

P1.4/SS

P1.6/MISOSerial-Out

SS
2
3593A–MICRO–7/06

AT89LP In-System Programming



AT89LP In-System Programming
2.1 Hardware Design Considerations
To allow In-System programming of an AT89LP microcontroller, the In-System programmer
must be able to override the pin functionality during programming. This section describes the
details of each pin used for the programming operation.

2.1.1 GND
The In-System programmer and target system need to operate with the same reference voltage.
This is done by connecting ground of the target to ground of the programmer. No special consid-
erations apply to this pin.

2.1.2 VCC
When programming the target microcontroller, the programmer outputs need to stay within the
ranges specified in the DC Characteristics. To easily adapt to any target voltage, the program-
mer can draw all power required from the target system. As an alternative, the target system can
have its power supplied from the programmer through the same connector used for the commu-
nication. This would allow the target to be programmed without applying power to the target
externally.

2.1.3 RESET
The target AT89LP microcontroller will enter programming mode only when its reset line (RST)
is active (low). To simplify this operation, it is recommended that the target reset can be con-
trolled by the In-System programmer.

Immediately after Reset has gone active, the In-System programmer will start to communicate
on the dedicated SPI wires SCK, MISO, MOSI, and SS. To avoid driver contention, a series
resistor should be placed on each of the four dedicated lines if there is a possibility that external
circuitry could be driving these lines. The connection is shown in Figure 2-2. The value of the
resistors should be chosen depending on the circuitry connected to the SPI bus. Note that the
AT89LP microcontroller will automatically set all its I/O pins to inputs when Reset is active.

Figure 2-2. Connecting ISP to Target SPI Bus

ISP

SPI
DEVICE

AT89LP
µC

SCK

MISO

MOSI

SS
3
3593A–MICRO–7/06



To avoid problems, the In-System programmer should be able to keep the entire target system
Reset for the duration of the programming cycle. The target system should never attempt to
drive the four SPI lines while Reset is active.

In some AT89LP microcontrollers, the Reset may be disabled to gain an extra I/O pin. In these
cases, the RST pin will always function as a reset during power up. To enter programming, the
RST pin must be driven low prior to the end of Power-On Reset (POR). After POR has com-
pleted, the device will remain in ISP mode until RST is brought high. Once the initial ISP session
has ended (by bringing RST high), the power to the target device must be cycled OFF and ON to
enter another programming session.

2.1.4 SLAVE SELECT
When programming an AT89LP microcontroller, the In-System programmer uses the slave
select (SS) pin to control the Serial Peripheral Interface (SPI). This pin is always driven by the
programmer, and the target system should never attempt to drive this wire when the target reset
is active. Immediately after the Reset goes active, this pin should be driven high by the program-
mer. While SS is high, the target device will ignore clock and data on SCK and MOSI, MISO will
remain tristated, and the ISP interface is reset to its default state. While SS is low, the target
device can receive a command and output data. SS should be driven low before the program-
mer issues a command and should return high after the command has been transmitted. The SS
signal maintains synchronization between the programmer (master) and target (slave), and
defines each command frame. If a target system has multiple AT89LP devices which must be
programmable by the same programmer, the SS pin can be used to enable only a single device
at a time, provided that the SS pin for each device can be driven independently.

The target AT89LP microcontroller will always set up its SS pin to be an input whenever Reset is
active. See also the description of “RESET” on page 3 pin. 

2.1.5 SCK
When programming an AT89LP microcontroller, the In-System programmer supplies the
clock waveform on the SCK pin. This pin is always driven by the programmer, and the target
system should never attempt to drive this pin when the target reset is active. The programmer
should always drive SCK low before SS is brought low and SCK should remain low while SS is
brought high. 

The target AT89LP microcontroller will always set up its SCK pin to be an input whenever Reset
is active. See also the description of “RESET” on page 3 pin.

2.1.6 MISO
When Reset is applied to the target AT89LP microcontroller, the MISO pin is set up to be an
input. Only after the “Programming Enable” command has been correctly transmitted to the tar-
get will the target AT89LP microcontroller set its MISO pin to become an output. MISO will
remain tristated while SS is high and will only output data if SS is low. Serial data bits on MISO
change at the falling edge of SCK.
4
3593A–MICRO–7/06

AT89LP In-System Programming



AT89LP In-System Programming
2.1.7 MOSI
When programming an AT89LP microcontroller, the In-System programmer supplies data to the
target on the MOSI pin. This pin is always driven by the programmer, and the target system
should never attempt to drive this pin when the target reset is active. The ISP interface samples
serial data bits from MOSI on the rising edge of SCK. 

The target AT89LP microcontroller will always set up its MOSI pin to be an input whenever
Reset is active. See also the description of “RESET” on page 3 pin.

2.2 Interface Timing
This section details general system timing sequences and constraints for entering or exiting
In-System programming as well as parameters related to the Serial Peripheral Interface during
ISP. The values of some timing parameters may differ between different members of the
AT89LP family. For the specific timing requirements of an AT89LP device, see that device’s
datasheet. The general timing parameters for the following waveform figures are listed in Sec-
tion “Timing Parameters” on page 8.

2.2.1 Power-up Sequence
Execute this sequence to enter programming mode immediately after power-up. In some
instances this is the only method to enter programming (see “RESET” on page 3).

1. Apply power between VCC and GND pins. RST should remain low.

2. Wait at least tPWRUP. and drive SS high.

3. Wait at least tPOR for the internal Power-on Reset to complete. The value of tPOR will 
depend on the current settings of the target device.

4. Start programming session.

Figure 2-3. Serial Programming Power-up Sequence

VCC

RST

SS

SCK

HIGH ZMISO

HIGH ZMOSI

tPWRUP

tPOR tZSS
5
3593A–MICRO–7/06



2.2.2 Power-down Sequence 
Execute this sequence to power-down the device after programming.

1. Drive SCK low.

2. Wait at least tSSD and bring SS high.

3. Tristate MOSI.

4. Wait at least tSSZ and then tristate SS and SCK.

5. Wait no more than tPWRDN and power off VCC.

Figure 2-4. Serial Programming Power-down Sequence 

Note: The waveforms on this page are not to scale.

2.2.3 ISP Start Sequence 
Execute this sequence to exit CPU execution mode and enter ISP mode when the device has
passed Power-On Reset and is already operational.

1. Drive RST low.

2. Drive SS high.

3. Wait tRLZ + tSTL.

4. Start programming session.

Figure 2-5. In-System Programming Start Sequence

VCC

RST

SS

SCK

HIGH ZMISO

HIGH ZMOSI

tPWRDN

tSSD tSSZ

tSTL

VCC

RST

SS

SCK

HIGH ZMOSI

HIGH ZMISO

XTAL1

tRLZ

tZSS

tSSE
6
3593A–MICRO–7/06

AT89LP In-System Programming



AT89LP In-System Programming
2.2.4 ISP Exit Sequence 
Execute this sequence to exit ISP mode and resume CPU execution mode.

1. Drive SCK low.

1. Wait at least tSSD and drive SS high.

2. Tristate MOSI.

3. Wait at least tSSZ and bring RST high.

4. Tristate SCK.

5. Wait tRHZ and tristate SS.

Figure 2-6. In-System Programming Exit Sequence

Note: The waveforms on this page are not to scale.

2.2.5 Serial Peripheral Interface
The Serial Peripheral Interface is a byte-oriented full-duplex synchronous serial communication
channel. During In-System programming, the programmer always acts as the SPI master and
the target device always acts as the SPI slave. The target device receives serial data on MOSI
and outputs serial data on MISO. The Programming Interface implements a standard SPI Port
with a fixed data order and for In-System programming, bytes are transferred MSB first as
shown in Figure 2-7. The SCK phase and polarity follow SPI clock mode 0 (CPOL = 0,
CPHA = 0) where bits are sampled on the rising edge of SCK and output on the falling edge of
SCK. For more detailed timing information see Figure 2-8.

Figure 2-7. ISP Byte Sequence

VCC

RST

SS

SCK

HIGH ZMOSI

HIGH ZMISO

XTAL1

tSSZ

tSSD

tRHZ

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

MOSI

MISO

SCK

Data Sampled
7
3593A–MICRO–7/06



Figure 2-8. Serial Programming Interface Timing 

2.2.6 Timing Parameters
The timing parameters for Figures 2-3 through 2-6, and Figure 2-8 are shown in Table 2-2.

Table 2-2. Programming Interface Timing Parameters

Note: 1. tSCK is independent of tCLCL. All devices can operate with minimum tSCK = 1 µs, although some 
devices may operate at faster speeds.

tSRtSSE

tSLSH

tSOV

tSF

tSOX

tSSDtSCK

tSHSL

tSOE tSOH

tSIHtSIS

SS

SCK

MISO

MOSI

Symbol Parameter Min Max Units

tCLCL System Clock Cycle Time Device Dependent ns

tPWRUP Power-on to SS High Time 10 µs

tPOR Power-on Reset Time Device Dependent ns

tPWRDN SS Tristate to Power Off 1 µs

tRLZ RST Low to I/O Tristate tCLCL 2 tCLCL ns

tSTL RST Low Settling Time 100 ns

tRHZ RST High to SS Tristate 0 2 tCLCL ns

tSCK Serial Clock Cycle Time Device Dependent(1) ns

tSHSL Clock High Time Device Dependent ns

tSLSH Clock Low Time Device Dependent ns

tSR Rise Time Device Dependent ns

tSF Fall Time Device Dependent ns

tSIS Serial Input Setup Time 10 ns

tSIH Serial Input Hold Time 10 ns

tSOH Serial Output Hold Time 10 ns

tSOV Serial Output Valid Time 35 ns

tSOE Output Enable Time 10 ns

tSOX Output Disable Time 25 ns

tSSE SS Enable Lead Time tSLSH ns

tSSD SS Disable Lag Time tSLSH ns

tZSS SCK Setup to SS Low 25 ns

tSSZ SCK Hold after SS High 25 ns
8
3593A–MICRO–7/06

AT89LP In-System Programming



AT89LP In-System Programming
3. Memory Organization
Atmel AT89LP microcontrollers offer from 2K bytes to 64K bytes of In-System programming non-
volatile Flash code memory. In addition, some devices offer nonvolatile Flash data memory. The
AT89LP devices also contain a read-only Atmel Signature Array for the device ID, a User Signa-
ture Array for user configuration information, a User Fuse Row for system configuration fuses,
and a memory Lock Bits for software security. Each memory type resides in its own address
space and is accessed by commands specific to that memory. The memory organization of a
typical AT89LP microcontroller is shown in Figure 3-1. The memory can be accessed one page
at a time. One page is the largest amount of data which can be programmed at one time. For
devices that can operate up to 5V, one page typically represents one row in the memory array.
For devices that can operate only up to 3V, one page represents one-half of a row in the mem-
ory array. The size and number of pages for typical code densities are listed in Table 3-1.
Generally all nonvolatile memory spaces within a device share the same page size. For the spe-
cific memory structure of an AT89LP device, see that device’s datasheet.

The AT89LP microcontrollers feature a Row Erase capability in addition to full Chip Erase capa-
bility. For most 5V devices the row is identical to the page, but for 3V-only devices the row
usually contains two pages and both pages will be erased by a Row Erase operation. Chip
Erase is still needed to unlock a device which has been previously protected. However, for an
unprotected part Row Erase saves time when only a few rows need reprogramming due to minor
code changes or updates. In summary, a page is the largest amount of data which can be pro-
grammed at one time, while a row is the smallest amount of data which can be erased at one
time.

User configuration fuses are mapped as if they were a row in the memory, with each byte
address representing one fuse. From a programming standpoint, fuses are treated the same as
normal code bytes except they are not affected by Chip Erase. Fuses can be enabled at any
time by writing 00h to the appropriate locations in the fuse row. However, to disable a fuse, i.e.
set it to FFh, the entire fuse row must be erased and then reprogrammed. The programmer
should read the state of all the fuses into a temporary location, modify those fuses which need to
be disabled, then issue a Fuse Write with Auto-Erase command using the temporary data.
9
3593A–MICRO–7/06



Figure 3-1. Memory Organization

Table 3-1. Typical Memory Page Sizes

Density (Kbytes) Page Size (Bytes) # Pages Address Range

2 32 64 0000H - 07FFH

4 32 128 0000H - 0FFFH

8 64 128 0000H - 1FFFH

12 64 192 0000H - 2FFFH

16 64 256 0000H - 3FFFH

32 64 512 0000H - 7FFFH

64 64 1024 0000H - FFFFH

Page 0

Page 1

Page N-1

Page N-2

Page 1Page 0

Page 3Page 2

Page N-3Page N-4

Page N-1Page N-2

Page 0

Page M-1

Page 1Page 0

Page M-1Page M-2

Page 0

Page 0

Page 0

Page 1Page 0

Page 1Page 0

Page 1Page 0User Fuse Row

User Signature Row

Atmel Signature Row

Data Memory

Code Memory

5V Devices 3V Only Devices
10
3593A–MICRO–7/06

AT89LP In-System Programming



AT89LP In-System Programming
4. Programming Protocol
After Reset goes active on the target AT89LP microcontroller, the chip is ready to enter program-
ming mode. The internal Serial Peripheral Interface is activated, and is ready to accept
instructions from the programmer. Commands are entered one byte at a time over the SPI pins.
Refer to “The Programming Interface” on page 1 for more details on the SPI. 

4.1 Command Format
Programming commands consist of an opcode byte, two address bytes, and zero or more data
bytes. In addition, all command packets must start with a two byte preamble of AAH and 55H.
The preamble increases the noise immunity of the programming interface by making it more dif-
ficult to issue unintentional commands. Figure 4-1 shows a simplified flow chart of a command
sequence. 

Figure 4-1. Command Sequence Flow Chart

A sample command packet is shown in Figure 4-2. The SS pin defines the packet frame. The SS
must be brought low before the first byte in a command is sent and brought back high after the
final byte in the command has been sent. The command is not complete until SS returns high.
Command bytes are issued serially on MOSI. Data output bytes are received serially on MISO.
Packets of variable length are supported by returning SS high when the final required byte has
been transmitted. In some cases command bytes have a don’t care value. Don’t care bytes in
the middle of a packet must be transmitted. Don’t care bytes at the end of a packet may be
ignored.

Figure 4-2. ISP Command Packet

Input Preamble 2
(55h)

Input Opcode

Input Address
High Byte

Input Address
Low Byte

Input/Output
Data

Address +1

Input Preamble 1
(AAh)

7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1

7 06 5 4 3 2 1

SS

SCK

MOSI

MISO

Preamble 2 Opcode Address High Address Low Data In

Data Out

X X X X

Preamble 1

X

11
3593A–MICRO–7/06



Page-oriented instructions always include a full 16-bit address. The higher order bits select the
page and the lower order bits select the byte within that page. The number of bits allocated for
page and byte addresses will vary depending on the memory size. See Table 3-1 for more infor-
mation. The page to be accessed is always fixed by the page address as transmitted. The byte
address specifies the starting address for the first data byte. After each data byte has been
transmitted, the byte address is incremented to point to the next data byte. This allows a page
command to linearly sweep the bytes within a page. If the byte address is incremented past the
last byte in the page, the byte address will roll over to the first byte in the same page. While load-
ing bytes into the page buffer, overwriting previously loaded bytes will result in data corruption.

4.2 Status Register
The current state of the memory may be accessed by reading the status register. The status reg-
ister is shown in Table 4-1. The status register can be used to monitor the completion of a
programming command by polling the state of the BUSY bit.

4.3 DATA Polling
The AT89LP microcontrollers implement DATA polling to indicate the end of a programming
cycle. While the device is busy, any attempted read of the last byte written will return the data
byte with the MSB complemented. Once the programming cycle has completed, the true value
will be accessible. During Erase, the data is assumed to be FFH and DATA polling will return
7FH. When writing multiple bytes in a page, the DATA value will be the last data byte loaded
before programming begins, not the written byte with the highest physical address within the
page.

Table 4-1. Status Register (Read Only)

– – – – LOAD SUCCESS WRTINH BUSY

Bit 7 6 5 4 3 2 1 0

Symbol Function

LOAD
Load flag. Cleared low by the load page buffer command and set high by the next 
memory write. This flag signals that the page buffer was previously loaded with data by 
the load page buffer command.

SUCCESS
Success flag. Cleared low at the start of a programming cycle and will only be set high if 
the programming cycle completes without interruption from the brownout detector.

WRTINH

Write Inhibit flag. Cleared low by the brownout detector (BOD) whenever programming 
is inhibited due to VCC falling below the minimum required programming voltage. If a 
BOD episode occurs during programming, the SUCCESS flag will remain low after the 
cycle is complete. WRTINH low also forces BUSY low.

BUSY
Busy flag. Cleared low whenever the memory is busy programming or if write is currently 
inhibited.
12
3593A–MICRO–7/06

AT89LP In-System Programming



AT89LP In-System Programming
Notes: 1. Programming Enable must be the first command issued after entering into programming mode.

2. Any number of data bytes from 0 to the page size may be read or loaded.

3. Auto-Erase erases an entire memory row. For devices with code memory ≥ 32K bytes, both pages in a row will be erased but 
only one may be written. Use Write Page to program the other page in the row.

4. Refer to a particular device’s datasheet for specific fuse or lock bit assignments and addresses.

5. User Fuses can only be enabled with the Write User Fuse command. If a fuse needs to be disabled, use Fuse Write with 
Auto-Erase to disable all the fuses and then re-enable only the required fuses.

4.4 Programming Command Summary

Command Opcode Addr High Addr Low Data 0 Data n 

Programming Enable(1) 1010 1100 0101 0011

Chip Erase 1000 1010

Read Status 0110 0000 xxxx xxxx xxxx xxxx Status Out

Load Page Buffer(2) 0101 0001 aaaa aaaa aaaa aaaa Data In 0 ... Data In n

Write Code Page(2) 0101 0000 aaaa aaaa aaaa aaaa Data In 0 ... Data In n

Write Code Page with Auto-Erase(2)(3) 0111 0000 aaaa aaaa aaaa aaaa Data In 0 ... Data In n

Read Code Page(2) 0011 0000 aaaa aaaa aaaa aaaa Data Out 0 ... Data Out n

Write Data Page(2) 1101 0000 aaaa aaaa aaaa aaaa Data In 0 ... Data In n

Write Data Page with Auto-Erase(2)(3) 1101 0010 aaaa aaaa aaaa aaaa Data In 0 ... Data In n

Read Data Page(2) 1011 0000 aaaa aaaa aaaa aaaa Data Out 0 ... Data Out n

Write User Fuses(4)(5) 1110 0001 aaaa aaaa aaaa aaaa Data In 0 ... Data In n

Write User Fuses with Auto-Erase(3)(4)(5) 1111 0001 aaaa aaaa aaaa aaaa Data In 0 ... Data In n

Read User Fuses(4) 0110 0001 aaaa aaaa aaaa aaaa Data Out 0 ... Data Out n

Write Lock Bits(4) 1110 0100 aaaa aaaa aaaa aaaa Data In 0 ... Data In n

Read Lock Bits(4) 0110 0100 aaaa aaaa aaaa aaaa Data Out 0 ... Data Out n

Write User Signature Page(2) 0101 0010 aaaa aaaa aaaa aaaa Data In 0 ... Data In n

Write User Signature Page with Auto-Erase(2)(3) 0111 0010 aaaa aaaa aaaa aaaa Data In 0 ... Data In n

Read User Signature Page(2) 0011 0010 aaaa aaaa aaaa aaaa Data Out 0 ... Data Out n

Read Atmel Signature Page(2) 0011 1000 aaaa aaaa aaaa aaaa Data Out 0 ... Data Out n
13
3593A–MICRO–7/06



4.4.1 Programming Enable
Function:

• Enables the programming interface to receive commands and configures MISO as an output.

• Program Enable must be the first command issued in any programming session. During In-
System programmin, a session is active while RST remains at low and is terminated by RST 
high or power off.

Usage:

1. Bring SS low.

2. Send preamble byte AAh.

3. Send preamble byte 55h.

4. Send opcode byte ACh.

5. Send high address byte 53h.

6. Send dummy low address byte. 53h should be returned on MISO if ISP is enabled.

7. Bring SS high.

Figure 4-3. Program Enable Sequence

4.4.2 Chip Erase
Function:

• Erases (programs FFh to) the entire code and data memory arrays.

• Erases the User Signature Row if User Row Programming Fuse is enabled.

• Lock bits are programmed to “unlock” state.

• Chip Erase does not affect the User Fuse Row.

Usage:

1. Drive SS low.

2. Send preamble byte AAh.

3. Send preamble byte 55h.

4. Send opcode byte 8Ah.

5. Drive SS high.

6. Poll data or status.

Figure 4-4. Chip Erase Sequence

7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1

SS

SCK

MOSI

MISO

Preamble 2 ACh 53h X

53h

X X X

Preamble 1

X 7 06 5 4 3 2 1

7 06 5 4 3 2 1

SS

SCK

MOSI

MISO

Preamble 2 8Ah

X X

Preamble 1

X

14
3593A–MICRO–7/06

AT89LP In-System Programming



AT89LP In-System Programming
4.4.3 Load Page Buffer
Function:

• Loads one page of data into the temporary page buffer but does not start programming.

• Use for interruptible loads or loading non-contiguous bytes to a page.

• The byte address (offset in page) is initialized from the low order bits of the address. The 
internal byte address is incremented by one after each successive data byte. The address 
will wrap around to the 1st byte of the page when incremented past the page end, however, 
previously loaded bytes should not be re-loaded.

• The Load Page Buffer command needs to be followed by a write command as the 
internal buffer is not cleared until either the next write has completed or the programming 
session ends.

• Clears Bit 3 (LOAD) of the status byte to signal that the buffer contains data.

• Load Page Buffer can be used before any write or write with auto-erase command.

Usage:

1. Drive SS low.

2. Send preamble byte AAh.

3. Send preamble byte 55h.

4. Send opcode byte 51h.

5. Send high address byte.

6. Send low address byte.

7. Send 1st data byte. Repeat for additional bytes.

8. Drive SS high.

Figure 4-5. Load Page Buffer Sequence (Single Data Byte)

7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1

SS

SCK

MOSI

MISO

Preamble 2 51h Address High Address Low Data In 0

X X X X

Preamble 1

X X
15
3593A–MICRO–7/06



4.4.4 Write Code Page
Function:

• Programs one page of data into the Code Memory array.

• Page address determined by high order bits of loaded address.

• The byte address (offset in page) is initialized from the low order bits of the address. The 
internal byte address is incremented by one after each successive data byte. The address 
will wrap around to the 1st byte of the page when incremented past the page end, however, 
previously loaded bytes should not be re-loaded. It is not possible to skip bytes while loading data 

during write. To load non-contiguous bytes in a page, use the Load Page Buffer command.

• See Figure 4-10 for an example of a multiple data byte page write command.

Usage:

1. Drive SS low.

2. Send preamble byte AAh.

3. Send preamble byte 55h.

4. Send opcode byte 50h.

5. Send high address byte.

6. Send low address byte.

7. To write only previously loaded data skip to (8), otherwise send 1st data byte. Repeat 
for additional bytes.

8. Drive SS high.

9. Poll data or status.

Figure 4-6. Write Code Page Sequence (Single Data Byte)

7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1

SS

SCK

MOSI

MISO

Preamble 2 50h Address High Address Low Data In 0

X X X X

Preamble 1

X X
16
3593A–MICRO–7/06

AT89LP In-System Programming



AT89LP In-System Programming
4.4.5 Write Code Page with Auto-Erase
Function:

• Erase one row in the Code Memory array and programs one page of data. For devices with 
code memory ≥ 32K bytes, both pages in the row will be erased but only one may be 
programmed. Use Write Code Page to program the other page.

• Row erase may be performed by not loading any data bytes.

• Page address determined by high order bits of loaded address.

• The byte address (offset in page) is initialized from the low order bits of the address. The 
internal byte address is incremented by one after each successive data byte. The address 
will wrap around to the 1st byte of the page when incremented past the page end, however, 
previously loaded bytes should not be re-loaded. It is not possible to skip bytes while loading data 

during write. To load non-contiguous bytes in a page, use the Load Page Buffer command.

• See Figure 4-10 for an example of a multiple data byte page write with auto-erase command.

Usage:

1. Drive SS low.

2. Send preamble byte AAh.

3. Send preamble byte 55h.

4. Send opcode byte 70h.

5. Send high address byte.

6. Send low address byte.

7. To perform row erase or to write only previously loaded data skip to (8), otherwise send 
1st data byte. Repeat for additional bytes.

8. Drive SS high.

9. Poll data or status.

Figure 4-7. Write Code Page with Auto-Erase Sequence (Single Data Byte)

Figure 4-8. Code Row Erase Sequence

7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1

SS

SCK

MOSI

MISO

Preamble 2 70h Address High Address Low Data In 0

X X X X

Preamble 1

X X

7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1

SS

SCK

MOSI

MISO

Preamble 2 70h Address High Address Low

X X X X

Preamble 1

X

17
3593A–MICRO–7/06



4.4.6 Read Code Page
Function:

• Read one page of data from the Code Memory array.

• Page address determined by high order bits of loaded address.

• The byte address (offset in page) is initialized from the low order bits of the address. The 
internal byte address is incremented by one after each successive data byte. The address 
will wrap around to the 1st byte of the page when incremented past the page end.

• See Figure 4-10 for an example of a multiple data byte page read command.

Usage:

1. Drive SS low.

2. Send preamble byte AAh.

3. Send preamble byte 55h.

4. Send opcode byte 30h.

5. Send high address byte.

6. Send low address byte.

7. Receive 1st data byte. Repeat for additional bytes.

8. Drive SS high.

Figure 4-9. Read Code Page Sequence (Single Data Byte)

7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1

7 06 5 4 3 2 1

SS

SCK

MOSI

MISO

Preamble 2 30h Address High Address Low

Data Out

X X X X

Preamble 1

X

X

18
3593A–MICRO–7/06

AT89LP In-System Programming



AT89LP In-System Programming
Figure 4-10. Code Page Write, Write with Auto-Erase, and Read Commands with N Code Bytes

7
0

6
5

4
3

2
1

7
0

6
5

4
3

2
1

7
0

6
5

4
3

2
1

7
0

6
5

4
3

2
1

S
S

S
C

K

M
O

S
I

M
IS

O

P
re

am
bl

e 
2

50
h

A
dd

re
ss

 H
ig

h
A

dd
re

ss
 L

ow
D

at
a 

In
 0

X
X

X
X

P
re

am
bl

e 
1

X

7
0

6
5

4
3

2
1

D
at

a 
In

 1

7
0

6
5

4
3

2
1

D
at

a 
In

 N
-1

7
0

6
5

4
3

2
1

7
0

6
5

4
3

2
1

7
0

6
5

4
3

2
1

7
0

6
5

4
3

2
1

S
S

S
C

K

M
O

S
I

M
IS

O

P
re

am
bl

e 
2

70
h

A
dd

re
ss

 H
ig

h
A

dd
re

ss
 L

ow
D

at
a 

In
 0

X
X

X
X

P
re

am
bl

e 
1

X

7
0

6
5

4
3

2
1

D
at

a 
In

 1

7
0

6
5

4
3

2
1

D
at

a 
In

 N
-1

7
0

6
5

4
3

2
1

7
0

6
5

4
3

2
1

7
0

6
5

4
3

2
1

7
0

6
5

4
3

2
1

S
S

S
C

K

M
O

S
I

M
IS

O

P
re

am
bl

e 
2

30
h

A
dd

re
ss

 H
ig

h
A

dd
re

ss
 L

ow

D
at

a 
O

ut
 0

X
X

X
X

P
re

am
bl

e 
1

X
7

0
6

5
4

3
2

1

D
at

a 
O

ut
 1

7
0

6
5

4
3

2
1

D
at

a 
O

ut
 N

-1

W
rit

e 
C

od
e 

P
ag

e

W
rit

e 
C

od
e 

P
ag

e 
w

ith
 A

ut
o-

E
ra

se

R
ea

d 
C

od
e 

P
ag

e

X
X

XX
X

X X
X

X

19
3593A–MICRO–7/06



4.4.7 Write Data Page
Function:

• Programs one page of data into the Data Memory array.

• Page address determined by high order bits of loaded address.

• The byte address (offset in page) is initialized from the low order bits of the address. The 
internal byte address is incremented by one after each successive data byte. The address 
will wrap around to the 1st byte of the page when incremented past the page end, however, 
previously loaded bytes should not be re-loaded. It is not possible to skip bytes while loading data 

during write. To load non-contiguous bytes in a page, use the Load Page Buffer command.

Usage:

• Identical to “Write Code Page” but with opcode D0h.

4.4.8 Write Data Page with Auto-Erase
Function:

• Erase one row in the Data Memory array and programs one page of data. For devices with 
code memory ≥ 32K bytes, both pages in the row will be erased but only one may be 
programmed. Use Write Data Page to program the other page.

• Row erase may be performed by not loading any data bytes.

• Page address determined by high order bits of loaded address.

• The byte address (offset in page) is initialized from the low order bits of the address. The 
internal byte address is incremented by one after each successive data byte. The address 
will wrap around to the 1st byte of the page when incremented past the page end, however, 
previously loaded bytes should not be re-loaded. It is not possible to skip bytes while loading data 

during write. To load non-contiguous bytes in a page, use the Load Page Buffer command.

Usage:

• Identical to “Write Code Page with Auto-Erase” but with opcode D2h.

4.4.9 Read Data Page
Function:

• Read one page of data from the Data Memory array.

• Page address determined by high order bits of loaded address.

• The byte address (offset in page) is initialized from the low order bits of the address. The 
internal byte address is incremented by one after each successive data byte. The address 
will wrap around to the 1st byte of the page when incremented past the page end.

Usage:

• Identical to “Read Code Page” but with opcode B0h
20
3593A–MICRO–7/06

AT89LP In-System Programming



AT89LP In-System Programming
4.4.10 Write User Signature Page
Function:

• Programs one page of data into the User Signature Row.

• The User Row Programming Fuse must be enabled prior to executing this command.

• Page address determined by high order bits of loaded address.

• The byte address (offset in page) is initialized from the low order bits of the address. The 
internal byte address is incremented by one after each successive data byte. The address 
will wrap around to the 1st byte of the page when incremented past the page end, however, 
previously loaded bytes should not be re-loaded. It is not possible to skip bytes while loading data 

during write. To load non-contiguous bytes in a page, use the Load Page Buffer command.

Usage:

• Identical to “Write Code Page” but with opcode 52h.

4.4.11 Write User Signature Page with Auto-Erase
Function:

• Erases the User Signature Row and programs one page of data. For devices with code 
memory ≥ 32K bytes both pages in the row will be erased but only one may be programmed. 
Use Write User Signature Page to program the other page.

• Row erase may be performed by not loading any data bytes.

• Page address determined by high order bits of loaded address.

• The byte address (offset in page) is initialized from the low order bits of the address. The 
internal byte address is incremented by one after each successive data byte. The address 
will wrap around to the 1st byte of the page when incremented past the page end, however, 
previously loaded bytes should not be re-loaded. It is not possible to skip bytes while loading data 

during write. To load non-contiguous bytes in a page, use the Load Page Buffer command.

Usage:

• Identical to “Write Code Page with Auto-Erase” but with opcode 72h.

4.4.12 Read User Signature Page
Function:

• Read one page of data from the User Signature Row.

• Page address determined by high order bits of loaded address.

• The byte address (offset in page) is initialized from the low order bits of the address. The 
internal byte address is incremented by one after each successive data byte. The address 
will wrap around to the 1st byte of the page when incremented past the page end.

Usage:

• Identical to “Read Code Page” but with opcode 32h
21
3593A–MICRO–7/06



4.4.13 Read Atmel Signature Page
Function:

• Read one page of data from the Atmel Signature Row.

• Page address determined by high order bits of loaded address.

• The byte address (offset in page) is initialized from the low order bits of the address. The 
internal byte address is incremented by one after each successive data byte. The address 
will wrap around to the 1st byte of the page when incremented past the page end.

• Atmel Device IDs are stored at locations 00h, 01h, and 02h.

Usage:

• Identical to “Read Code Page” but with opcode 38h

4.4.14 Write Lock Bits
Function:

• Program (lock) memory Lock Bits.

• Lock Bits can only be erased (unlocked) by Chip Erase.

• Each Lock Bit is accessed at a separate byte address. The lock bit address is initialized from 
the low order bits of the address. The internal bit address is incremented by one after each 
successive data byte. To program (lock) a bit, write 00h to its location. To leave a lock bit 
unchanged, write FFh to its location. Refer to a particular device’s datasheet for specific lock 
bit assignments and addresses.

Usage:

1. Drive SS low.

2. Send preamble byte AAh.

3. Send preamble byte 55h.

4. Send opcode byte E4h.

5. Send high address byte.

6. Send low address byte.

7. Send 1st data byte, with 00h for lock or FFh for unchanged. Repeat for additional bytes.

8. Drive SS high.

9. Poll data or status.

Figure 4-11. Write Lock Bits Sequence (Single Lock Bit)

7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1

SS

SCK

MOSI

MISO

Preamble 2 E4h Address High Address Low 00h or FFh

X X X X

Preamble 1

X X
22
3593A–MICRO–7/06

AT89LP In-System Programming



AT89LP In-System Programming
4.4.15 Read Lock Bits
Function:

• Read status of memory Lock Bits.

• Each Lock Bit is accessed at a separate byte address. The lock bit address is initialized from 
the low order bits of the address. The internal bit address is incremented by one after each 
successive data byte. A lock bit will read as FFh for unlocked or 00h for locked. Refer to a 
particular device’s datasheet for specific lock bit assignments and addresses.

Usage:

1. Drive SS low.

2. Send preamble byte AAh.

3. Send preamble byte 55h.

4. Send opcode byte 64h.

5. Send high address byte.

6. Send low address byte.

7. Receive 1st data byte. Repeat for additional bytes.

8. Drive SS high.

Figure 4-12. Read Lock Bits Sequence (Single Lock Bit)

7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1

7 06 5 4 3 2 1

SS

SCK

MOSI

MISO

Preamble 2 64h Address High Address Low

FFh or 00h

X X X X

Preamble 1

X

X

23
3593A–MICRO–7/06



4.4.16 Write User Fuses
Function:

• Enable User Configuration Fuses.

• User Fuses can only be disabled by Write User Fuses with Auto-Erase.

• The Write User Fuse command is similar to Write Code Page where each fuse is accessed 
as if it were a full byte within a fuse page. The fuse address is initialized from the low order 
bits of the address. The internal fuse address is incremented by one after each successive 
data byte. To program (enable) a fuse, write 00h to its location. To leave a fuse unchanged, 
write FFh to its location. Refer to a particular device’s datasheet for specific user fuse 
assignments and addresses.

Usage:

1. Drive SS low.

2. Send preamble byte AAh.

3. Send preamble byte 55h.

4. Send opcode byte E1h.

5. Send high address byte.

6. Send low address byte.

7. Send 1st data byte, with 00h for enable or FFh for unchanged. Repeat for additional 
bytes.

8. Drive SS high.

9. Poll data or status.

Figure 4-13. Write User Fuses Sequence (Single Fuse Bit)

7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1

SS

SCK

MOSI

MISO

Preamble 2 E1h Address High Address Low 00h or FFh

X X X X

Preamble 1

X X
24
3593A–MICRO–7/06

AT89LP In-System Programming



AT89LP In-System Programming
4.4.17 Write User Fuses with Auto-Erase
Function:

• Disables all User Fuses then enables selected User Configuration Fuses.

• The Write User Fuse with Auto-Erase command is similar to Write Code Page with Auto-
Erase where each fuse is accessed as if it were a full byte within a fuse page. The fuse 
address is initialized from the low order bits of the address. The internal fuse address is 
incremented by one after each successive data byte. To program (enable) a fuse, write 00h to 
its location. To leave a fuse disabled, write FFh to its location. Refer to a particular device’s 
datasheet for specific user fuse assignments and addresses.

• The Write User Fuse with Auto-Erase command will erase the entire fuse row. If the 
programmer does not want to modify certain fuses, the programmer should first read the 
state of the fuses and then write back the same value to the fuse when issuing the write with 
auto-erase command.

Usage:

1. Drive SS low.

2. Send preamble byte AAh.

3. Send preamble byte 55h.

4. Send opcode byte F1h.

5. Send high address byte.

6. Send low address byte.

7. Send 1st data byte, with 00h for enable or FFh for disable. Repeat for additional bytes.

8. Drive SS high.

9. Poll data or status.

Figure 4-14. Write User Fuses with Auto-Erase Sequence (Single Fuse Bit)

7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1

SS

SCK

MOSI

MISO

Preamble 2 F1h Address High Address Low 00h or FFh

X X X X

Preamble 1

X X
25
3593A–MICRO–7/06



4.4.18 Read User Fuses
Function:

• Read status of User Configuration Fuses.

• The Read User Fuse command is similar to Read Code Page where each User Fuse is 
accessed as if it were a full byte within a fuse page. The fuse address is initialized from the 
low order bits of the address. The internal fuse address is incremented by one after each 
successive data byte. A fuse will read as FFh for disabled or 00h for enabled. Refer to a 
particular device’s datasheet for specific fuse assignments and addresses.

Usage:

1. Drive SS low.

2. Send preamble byte AAh.

3. Send preamble byte 55h.

4. Send opcode byte 61h.

5. Send high address byte.

6. Send low address byte.

7. Receive 1st data byte. Repeat for additional bytes.

8. Drive SS high.

Figure 4-15. Read User Fuses Sequence (Single Fuse Bit)

7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1

7 06 5 4 3 2 1

SS

SCK

MOSI

MISO

Preamble 2 64h Address High Address Low

FFh or 00h

X X X X

Preamble 1

X

X

26
3593A–MICRO–7/06

AT89LP In-System Programming



AT89LP In-System Programming
4.4.19 Read Status
Function:

• Read memory status byte.

Usage:

1. Drive SS low.

2. Send preamble byte AAh.

3. Send preamble byte 55h.

4. Send opcode byte 60h.

5. Send dummy high address byte.

6. Send dummy low address byte.

7. Receive 1st data byte. Repeat to continue polling.

8. Drive SS high.

Figure 4-16. Read Status Sequence

5. Programming the AT89LP2052/LP4052
The AT89LP2052 and AT89LP4052 microcontrollers are slightly different from the rest of the
AT89LP family. These devices are pin compatible with the AT89C2051 and AT89C4051 micro-
controllers and maintain the classic 8051 active-HIGH reset. After a cold power-up, RST must
be kept low (inactive) for at least tPWRUP before being driven high (active) in order to avoid latch-
up. The AT89LP2052 and AT89LP4052 In-System programming protocol differs in that only a
single preamble byte (AAh) is used instead of two and they do not support any Auto-Erase or
Row Erase commands. The User Fuse and Lock Bit organization is also different with all the
lock bits stored as bits in a single byte and all the user fuses stored as bits in another single byte.
In addition the AT89LP2052 and AT89LP4052 support high voltage parallel programming. ISP
can be enabled or disabled by setting or clearing the ISP Enable fuse during parallel program-
ming. For details on programming the AT89LP2052 or AT89LP4052 in either parallel or serial
mode, see the associated datasheet for those devices.

7 06 5 4 3 2 1

7 06 5 4 3 2 1

SS

SCK

MOSI

MISO

Preamble 2 60h

Status Out

X X X X

Preamble 1

X

XX X
27
3593A–MICRO–7/06



Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland 
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High-Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

3593A–MICRO–7/06

© 2006 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others, are
registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.


	1. Overview
	2. The Programming Interface
	2.1 Hardware Design Considerations
	2.1.1 GND
	2.1.2 VCC
	2.1.3 RESET
	2.1.4 SLAVE SELECT
	2.1.5 SCK
	2.1.6 MISO
	2.1.7 MOSI

	2.2 Interface Timing
	2.2.1 Power-up Sequence
	2.2.2 Power-down Sequence
	2.2.3 ISP Start Sequence
	2.2.4 ISP Exit Sequence
	2.2.5 Serial Peripheral Interface
	2.2.6 Timing Parameters


	3. Memory Organization
	4. Programming Protocol
	4.1 Command Format
	4.2 Status Register
	4.3 DATA Polling
	4.4 Programming Command Summary
	4.4.1 Programming Enable
	4.4.2 Chip Erase
	4.4.3 Load Page Buffer
	4.4.4 Write Code Page
	4.4.5 Write Code Page with Auto-Erase
	4.4.6 Read Code Page
	4.4.7 Write Data Page
	4.4.8 Write Data Page with Auto-Erase
	4.4.9 Read Data Page
	4.4.10 Write User Signature Page
	4.4.11 Write User Signature Page with Auto-Erase
	4.4.12 Read User Signature Page
	4.4.13 Read Atmel Signature Page
	4.4.14 Write Lock Bits
	4.4.15 Read Lock Bits
	4.4.16 Write User Fuses
	4.4.17 Write User Fuses with Auto-Erase
	4.4.18 Read User Fuses
	4.4.19 Read Status


	5. Programming the AT89LP2052/LP4052

