TTL MEMORIES

SERIES 54/74, 54S/74S PROGRAMMABLE READ-ONLY MEMORIES

BULLETIN NO. DL-S 7512258, MAY 1975

- Titanium-Tungsten (Ti-W) Fuse Links for Fast, Low-Voltage, Reliable Programming
- Full Decoding and Chip Select Simplify System Design
- All Schottky-Clamped PROM's Offer: Fast Chip Select to Simplify System Decode Choice of Three-State or Open-Collector Outputs P-N-P Inputs for Reduced Loading on System Buffers/Drivers
- Applications Include: Microprogramming/Firmware Loaders Code Converters/Character Generators Translators/Emulators Address Mapping/Look-Up Tables

TYPE NUMBER	R (PACKAGES)	BIT SIZE	ουτρυτ	TYPICAL ACC	ESS TIME (ns)
–55°C to 125°C	0° C to 70° C	(ORGANIZATION)	CONFIGURATION	FROM ADDRESS	FROM CHIP SELECT
SN54186(J, W)	SN74186(J, N)	512 bits (64 W x 8 B)	open-collector	50	55
SN54188A(J, W)	SN74188A(J,N)	050 1.14	open-collector	30	34
SN54S188(J, W)	SN74S188(J, N)	256 bits (32 W x 8 B)	open-collector	25	12
SN54S288(J, W)	SN74S288(J, N)	(32 W X 6 B)	three-state	25	12
SN54S287(J, W)	SN74S287(J, N)	1024 bits	three-state	42	15
SN54S387(J, W)	SN74S387(J, N)	(256 W × 4 B)	open-collector	42	15
SN54S470(J)	SN74S470(J, N)	2048 bits	open-collector	50	20
SN54S471(J)	SN74S471(J, N)	(256 W x 8 B)	three-state	50	20
SN54S472(J)	SN74S472(J, N)	4096 bits	three-state	55	20
SN54S473(J)	SN74S473(J, N)	(512 W x 8 B)	open-collector	55	20

(64 W	512 BITS ORDS BY 8 BITS '186) (32 WORE	6 BITS DS BY 8 BITS) S188, 'S288	(256 WORD	BITS S BY 4 BITS) , 'S387	(256 WORD	3 BITS IS BY 8 BITS)), 'S471	4096 1 (512 WORDS) S472,	BY 8 BITS)
NC 12 NC 22 ADA 32 ADB 42 CS1 62 CS2 72 ADD 82 ADE 92 ADE 102 GND 1 112 NC 122	223 221 221 220 219 219 219 219 219 219 219 219	VCC 00 1 1 GND 2 00 2 2 C 00 1 00 3 3 C 00 2 00 4 4 C 00 3 00 5 5 C 00 4 00 6 6 C 00 5 00 7 7 C 00 6 GND 8 C 10 7 10 8 10 1 10	14 AD E 13 AD D 12 AD C 11 AD B	AD G 1 AD F 2 AD E 3 AD 4 AD 4 AD 4 AD 4 AD 5 AD 6 AD 7 AD 7)16 VCC)15 AD H)14 CS 2)13 CS 1)12 DO 1)11 DO 2)10 O3)9 DO 4	AD A 1C AD B 2C AD C 3C AD D 4C AD E 5C DO 1 6C DO 2 7C DO 3 8C DO 4 9C GND 10C	>20 Vcc >19 AD H >18 AD G >17 AD F >16 CS 2 >15 CS 1 >14 D08 >13 D07 >12 D06 >11 D05	AD A 10 AD B 20 AD C 30 AD C 40 AD E 50 DO 1 60 DO 2 70 DO 3 80 DO 4 90 GND 100	20 VCC 19 AD 1 18 AD H 17 AD 6 16 AD F 15 C5 14 D08 13 D07 12 D06 11 D05

Pin assignments for all of these memories are the same for all packages.

NC–No internal connection [†]TO is used for testing purposes The logic at TO is undefined.

description

These monolithic TTL programmable read-only memories (PROM's) feature titanium-tungsten (Ti-W) fuse links with each link designed to program in one millisecond or less. The Schottky-clamped versions of these PROM's offer considerable flexibility for upgrading existing designs or improving new designs as they feature full Schottky clamping for improved performance, low-current MOS-compatible p-n-p inputs, choice of bus-driving three-state or open-collector outputs, and improved chip-select access times.

The high-complexity 2048- and 4096-bit PROM's can be used to significantly improve system density for fixed memories as all are offered in the 20-pin dual-in-line package having pin-row spacings of 0.300 inch.

SERIES 54/74, 54S/74S PROGRAMMABLE READ-ONLY MEMORIES

description (continued)

Data can be electronically programmed, as desired, at any bit location in accordance with the programming procedure specified. All PROM's, except the 'S287 and 'S387, are supplied with a low-logic-level output condition stored at each bit location. The programming procedure open-circuits Ti-W metal links, which reverses the stored logic level at selected locations. The procedure is irreversible; once altered, the output for that bit location is permanently programmed. Outputs never having been altered may later be programmed to supply the opposite output level. Operation of the unit within the recommended operating conditions will not alter the memory content.

A low level at the chip-select input(s) enables each PROM except the '186, which is enabled by a high level at both chip-select inputs. The opposite level at any chip-select input causes the outputs to be off.

The three-state output offers the convenience of an open-collector output with the speed of a totem-pole output; it can be bus-connected to other similar outputs yet it retains the fast rise time characteristic of the TTL totem-pole output. The open-collector output offers the capability of direct interface with a data line having a passive pull-up.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage (see Note 1)		7 V
Input voltage		5.5 V
Operating free-air temperature range:	SN54', SN54S' Circuits	25°C
· - · ·	SN74', SN74S' Circuits	70°C
Storage temperature range		50°C

NOTE 1: Voltage values are with respect to network ground terminal (GND 2 of '186),. For '186 GND 1 and both GND 2 terminals are all connected to system ground except during programming. The supply-voltage rating does not apply during programming of the '188, '188A, or the 54S/74S PROM's.

TYPES SN54186, SN74186 PROGRAMMABLE READ-ONLY MEMORIES

recommended conditions for programming

		MIN	NOM	MAX	UNI
Supply voltages (see Note 2)	Vcc	4.75	5	5.25	v
Supply voltages (see Note 2)	GND 1	-5		-6†	
Input conditions (see Note 3 and 4)	High level		pen circu equivale		
	Low level	-5		-6†	V
Output voltage				-6.5†‡	V
Output current, output being programmed		95	-120	-130	mA
Duration of programming pulse (see Note 5)		1		20	ms
Programming duty cycle			25	35	%
Free-air temperature		0		55	°c

[†]Absolute maximum ratings.

 ‡ Clamp to ensure output does not exceed -0.5 V with respect to GND 1.

- NOTES: 2. Voltage values are with respect to the GND 2 terminals
 - 3. The high-level (off) output of a Series 54/74 or 54S/74S open-collector gate with no pull-up resistor meets the requirements for a high-level input condition.
 - 4. The low-level input voltage must be within ± 0.5 volts of the applied voltage at GND 1.
 - 5. Programming is guaranteed if the pulse is applied to the output for 10 ms. Typically, programming occurs in less than 1 ms.

step-by-step programming procedure

Programming the SN54186 or SN74186 is performed individually for each of the 512 bit locations and consists basically of applying a current pulse to each output terminal where a low logic level is to be changed to a high (off) level. The power supply and ground connections described below are designed to ensure that alteration of the memory content occurs during the programming procedure only.

- 1. Connect the memory as shown in Figure 1. To address a particular word in the memory, set the input switches to the binary equivalent of that word where a low logic level is as specified under "recommended conditions for programming" and a high logic level is either an open circuit or connection to an open-collector TTL gate with no pull-up resistor.
- 2. Apply a programming current pulse as specified to the pin associated with the first bit to be changed from a low-level to a high-level output.
- Repeat Step 2 for each high-level output desired in the word addressed (program only one bit at a time). Any bit
 that is to remain at a low level should have its respective output open-circuited during the entire programming
 cycle for the addressed word.
- 4. Set the next input address and repeat steps 2 and 3 at a programming duty cycle of 35% maximum. This procedure is repeated for each input address for which a specific output word pattern is desired. A low logic level can always be changed to a high logic level simply by repeating Steps 1 and 2. Once programmed to provide a high logic level, the output cannot be changed to supply a low logic level.
- NOTE: When verification indicates that a bit did not program, repeat steps 2 through 4. If the bit did not program after the second application of a 1-millisecond programming pulse, repeat steps 2 through 4 using programming pulse time of 10 to 20 milliseconds. Regardless of the programming pulse duration, its total average pulse time should be no more than 35% of the programming culse.

FIGURE 1-PROGRAMMING CONNECTIONS

TYPES SN54188A, SN74188A, AND SERIES 54S/74S PROGRAMMABLE READ-ONLY MEMORIES

recommended conditions for programming

			'188A		SNS	54S', SN	74S'	
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC} (see Note 6)	Steady state	4.75	5	5,75	4.75	5	5.75	V
Supply voltage, VCC (see Note of	Program pulse	10	10.5	11†	10	10.5	11†	ſ
Input voltage	High level, VIH	2.4		5	2.4	_	5	
input voltage	Low level, VIL	0		0.5	0		0.5	Ĩ
Termination of all outputs except the one to be	programmed		load cir Figure 2			load cire Figure 2		
Voltage applied to output to be programmed, V	D(pr) (see Note 7)		0.25	+0.3 0.8	0	0.25	0.3	v
Duration of V _{CC} programming pulse Y (see Figu	re 3 and Note 8)	1		20	1		20	ms
Programming duty cycle			25	35		25	35	%
Free-air temperature		0		55	0		55	°c

[†]Absolute maximum ratings.

NOTES: 6. Voltage values are with respect to the GND 2 terminals.

 The '188A, 'S188, 'S288, 'S470, 'S471, 'S472, and 'S473 are supplied with all bit locations containing a low logic level, and programming a bit changes the output of the bit to high logic level. The 'S287 and 'S387 are supplied with all bit outputs at a high logic level, and programming a bit changes it to a low logic level.

8. Programming is guaranteed if the pulse applied is 10 ms long. Typically, programming occurs in 1 ms.

step-by-step programming procedure

- 1. Apply steady-state supply voltage (V_{CC} = 5 V) and address the word to be programmed.
- 2. Verify that the bit location needs to be programmed. If not, proceed to the next bit.
- If the bit requires programming, disable the outputs by applying a high-logic-level voltage to the chip-select input(s).
- 4. Only one bit location is programmed at a time. Connect each output not being programmed to 5 V through 3.9 kΩ and apply the voltage specified in the table to the output to be programmed. Maximum current out of the programming output supply during programming is 150 mA.
- 5. Step V_{CC} to 10.5 V nominal. Maximum supply current required during programming is 750 mA.
- Apply a low-logic-level voltage to the chip-select input(s). This should occur between 10 μs and 1 ms after V_{CC} has reached its 10.5-V level. See programming sequence of Figure 3.
- 7. After the X pulse time (1 ms) is reached, a high logic level is applied to the chip-select inputs to disable the outputs.
- 8. Within 10 μ s to 1 ms after the chip-select input(s) reach a high logic level, V_{CC} should be stepped down to 5 V at which level verification can be accomplished.
- The chip-select input(s) may be taken to a low logic level (to permit program verification) 10 μs or more after V_{CC} reaches its steady-state value of 5 V.
- 10. At a Y pulse duty cycle of 35% or less, repeat steps 1 through 8 for each output where it is desired to program a bit.
- NOTES: A) V_{CC} should be removed between program pulses to reduce dissipation and chip temperatures. See Figure 3.
 B) When verification indicates that a bit did not program, repeat steps 3 through 9. If the bit did not program after the second application of a 1-ms X pulse, repeat steps 3 through 9 using an X pulse time of 10 to 20 ms. Regardless of the X duration, the total average pulse time of Y should be no more than 35% of the programming cycle.

TYPES SN54186, SN54188A, SN74186, SN74188A PROGRAMMABLE READ-ONLY MEMORIES

recommended operating conditions

		SN54186			SN74186		
	S	SN54188A			N74188	A	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}	4.5	5	5,5	4.75	5	5.25	v
High-level output voltage, VOH			5.5			5.5	V
Low-level output current, IOL			12			12	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	-	EST CONDITI	owst		'18 6			'188A		
	FARAMETER		ESTCONDITI	UNS.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.8			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN,	I _I = -12 mA				-1.5			-1.5	V
1	High lough output ourgant	V _{CC} = MIN,	V _{IH} = 2 V,	V _{OH} = 2.4 V			100				
юн	High-level output current	V _{IL} = 0.8 V		V _{OH} = 5.5 V			200			100	μA
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,					0.4			0.45	v
II.	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
Чн	High-level input current	V _{CC} = MAX,	V _I = 2.4 V				40			40	μA
ΊL	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V				-1			-1	mA
1.0.0	Supply current		See Nets 0	Both CS at 0 V		47	95				
ICC	Supply current	V _{CC} = MAX,	See Note 9	Both CS at 4.5 V		80	120				mA
Іссн	Supply current, all outputs high	Vcc = MAX		See Note 10					50	80	
ICCL	Supply current, all outputs low			See Note 11					82	110	mA
Co	Off-state output capacitance	V _{CC} = 5 V,	V ₀ = 2 V,	f = 1 MHz		6.5			6.5		рF

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

NOTES: 9. ICC of '186 is measured with all outputs open and the address inputs at 4.5 V. Typical values are for 50% of the bits programmed.

 I_{CCH} of '188A is measured with all inputs at 4.5 V, all outputs open.
 I_{CCL} of '188A is measured with the chip-select input grounded, all other inputs at 4.5 V, and all outputs open. The typical value shown is for the worst-case condition of all eight outputs low at one time. This condition may not be possible after the device has been programmed.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

түре	TEST CONDITIONS	t _{a(ad)} (ns) Access time from address		Access ti	t _a (CS/ CS) (ns) Access time from chip select (enable time)		y (ns) 1 delay time, -level output 5t (disable time)
		TYP	MAX	ТҮР	MAX	TYP	MAX
'186	$C_{L} = 30 pF$, $R_{L1} = 400 \Omega$,	50	75	55	75	40	75
'188A	$R_{L2} = 600 \Omega$, See Figure 4	30	50	34	50	23	50

SERIES 54S/74S PROGRAMMABLE READ-ONLY MEMORIES WITH OPEN-COLLECTOR OUTPUTS

recommended operating conditions

			′S188		's	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	1
	Series 54S	4.5	5	5.5	4.5	5	5.5	v
Supply voltage, V _{CC}	Series 74S	4.75	5	5.25	4.75	5	5.25	1 °
High-level output voltage, VOH				5.5			5.5	V
Low-level output current, IOL				20			16	mA
Operating free-air temperature, T_{Δ}	Series 54S	-55		125	-55		125	°c
Operating nee-an temperature, 1 A	Series 74S	0		70	0		70	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[PARAMETER	TEST CONDITIO	ONS [†]	MIN	TYP‡	MAX	UNIT
⊻ін	High-level input voltage			2			V
VIL	Low-level input voltage					0.8	V
VIK	Input clamp voltage	V _{CC} = MIN, I	=18 mA			-1.2	V
	High-level output current	V _{CC} = MIN, V V _{IH} = 2 V,	OH = 2.4 V			50	μA
I OH.			OH = 5.5 V			100	^{#A}
VOL	Low-level output voltage		IH = 2 V,			0.5	v
			DL = MAX				
4	Input current at maximum input voltage	V _{CC} = MAX, V	= 5.5 V			1	mA
Гн	High-level input current	V _{CC} = MAX, V	= 2.7 V			25	μA
կլ	Low-level input current	V _{CC} = MAX, V	i = 0.5 V			-250	μA
		V _{CC} = MAX,	′S188		80	110	
Ι.	Country of the second	Chip select(s) at 0 V,	ʻ\$387		100	135	1.1
l lcc	Supply current	Outputs open,	'S470		110	155	mA
		See Note 12	'S473		120		

switching characteristics over recommended ranges of TA and VCC (unless otherwise noted)

ТҮРЕ	TEST CONDITIONS	Access tir	t _{a(ad)} (ns) Access time from address		(ns) ne from nable time)	tpLH (ns) Propagation delay time, low-to-high-level output from chip select (disable time)	
		TYP‡	MAX	TYP‡	MAX	TYP‡	MAX
SN54S188		25	50	12	30	12	30
SN74S188		25	40	12	25	12	25
SN54S387	C _L = 30 pF,	42	75	15	40∮	15	40∮
SN74S387	R _{L1} = 300 Ω,	42	65	15	35	15	35
SN54S470	R _{L2} = 600 Ω,	50	80	20	40	15	35
SN74S470	See Figure 4	50	70	20	35	15	30
SN54S473		55		20		15	
SN74S473		55		20		15	

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

An SN54S387 in the W package operating at free-air temperatures above 108°C requires a heat sink that provides a thermal resistance from case to free air, $R_{\theta CA}$, of not more than 42 °C/W.

∮Tentative specifications.
NOTE 12: The typical values of I_{CC} shown are with all outputs low.

SERIES 54S/74S **PROGRAMMABLE READ-ONLY MEMORIES WITH 3-STATE OUTPUTS**

recommended operating conditions

		's	′S287 471, ′S4	72		'S288		UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	1
Supply voltage Mag	Series 54S	4.5	5	5.5	4.5	5	5.5	v
Supply voltage, VCC	Series 74S	4.75	5	5.25	4.75	5	5.25	1 °
	Series 54S			2			-2	
High-level output current, IOH	Series 74S			-6.5			-6.5	mA
Low-level output current, IOL				16			20	mA
Operating free-air temperature, T_{Δ}	Series 54S	-55		125	-55		125	°c
operating nee-an temperature, 1A	Series 74S	0		70	0		70	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	BABAMETER	TEST CONDITIONS [†]		SN54S'			SN74S'			
PARAMETER		TEST CONDITIONS'		MIN	TYP‡	MAX	MIN	түр‡	MAX	UNIT
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage					0.8	-		0,8	V
VIK	Input clamp voltage	V _{CC} = MIN,	l _l = –18 mA			-1.2			-1.2	V
v _{он}	High-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = MAX	2.4	3.4		2.4	3.2		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{1H} = 2 V, I _{OL} = MAX			0.5			0.5	v
IOZH	Off-state output current, high-level voltage applied	V _{CC} = MAX, V _O = 2.4 V	V _{IH} = 2 V,			50			50	μA
'ozl	Off-state output current, low-level voltage applied	V _{CC} = MAX, V _O = 0.5 V	V _{IH} = 2 V,			-50			-50	μA
II.	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5 V			1			1	mA
Чн	High-level input current	V _{CC} = MAX,	V _I = 2.7 V			25			25	μA
hL	Low-level input current	V _{CC} = MAX,	V _I = 0.5 V			-250			-250	μA
los	Short-circuit output current§	V _{CC} = MAX		-30		-100	-30		-100	mA
lcc	Supply current	V _{CC} = MAX, Chip select(s) at 0 V, Outputs open,	'S287 'S288 'S471		100 80 110	135 110 155		100 80 110	135 110 155	mA
		See Note 12	'S472		120			120		1

switching characteristics over recommended ranges of TA and VCC (unless otherwise noted)

ТҮРЕ	TEST CONDITIONS	t _{a(ad)} (ns) Access time from address		t _a (CS) (ns) Access time from chip select (enable time)		tpxz (ns) Disable time from high or low level	
		TYP‡	MAX	түр‡	MAX	TYP‡	MAX
SN54S287	C _L = 30 pF for t _{a(ad)} and t _a (C S), 5 pF for tpχ _Z ; R _L = 300 Ω; See Figure 5	42	75∮	15	40∮	12	
SN74S287		42	65	15	35	12	
SN54S288		25	50	12	30	8	.30
SN74S288		25	40	12	25	8	20
SN54S471		50	80	20	40	15	35
SN74S471		50	70	20	35	15	30
SN54S472		55		20		15	
SN74S472		55		20		15	

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 All typical values are at V_{CC} = 5 V, T_A = 25°C.
 Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
 An SN54S287 in the W package operating at free-air temperatures above 108°C requires a heat sink that provides a thermal resistance from case-to-free-air, R_{0CA}, of not more than 42°C/W.
 NOTE 12: The typical values of I_{CC} shown are with all outputs low.

575

SERIES 54/74, 54S/74S PROGRAMMABLE READ-ONLY MEMORIES

- NOTES: A. The input pulse generator has the following characteristics: $Z_{out} \approx 50 \ \Omega$ and PRR \leq 1 MHz. For Series 54/74, tr \leq 7 ns, $t_f \leqslant 7$ ns. For Series 54S/74S, $t_r \leqslant 2.5$ ns, $t_f \leqslant 2.5$ ns. B. CL includes probe and jig capacitance.
 - C. The pulse generator is connected to the input under test. The other inputs, memory content permitting, are connected so that the input will switch the output under test .

FIGURE 4-SWITCHING TIMES OF '186, '188A, 'S188, 'S470, 'S387, AND 'S473

NOTES: A. When measuring access times from address inputs, the chip-select input(s) is(are) low.

- B. When measuring access and disable times from chip-select input(s), the address inputs are steady-state.
- C. Waveform 1 is for the output with internal conditions such that the output is low except when disabled. Waveform 2 is for the output with internal conditions such that the output is high except when disabled.
- D. Input waveforms are supplied by pulse generators having the following characteristics: $t_r \le 2.5$ ns, $t_f \le 2.5$ ns, PRR ≤ 1 MHz, and $Z_{out} \approx 50 \ \Omega$.

FIGURE 5-SWITCHING TIMES OF 'S287, 'S288, 'S471, AND 'S472

PRINTED IN U.S.A.

575

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222