

3V, 128M-BIT [x 1/x 2/x 4] RPMC Flash Memory

Key Features

- Quad I/O mode is permanently enabled
- Provide Authentication feature by Monotonic Counter (MC) Feature
- Support clock frequency up to 104MHz

Contents

1. FEATU	JRES	4
2. GENE	RAL DESCRIPTION	5
3. PIN CO	ONFIGURATIONS	6
4. PIN DE	ESCRIPTION	
	K DIAGRAM	-
	PROTECTION	
U. DAIA	Table 1. Protected Area Sizes	
	Table 2. 4K-bit Secured OTP Definition	
7 Memo	ry Organization	
	Table 3. Memory Organization	
	IAND DESCRIPTION	
9. CONIN		
9-1.	Table 4. Command Set	
9-1. 9-2.	Write Enable (WREN) Write Disable (WRDI)	
9-2. 9-3.	Read Identification (RDID)	
9-3.	Table 5. ID Definitions	
9-4.	Release from Deep Power-down (RDP), Read Electronic Signature (RES)	
9-5.	Read Electronic Manufacturer ID & Device ID (REMS)	
9-6.	Read Status Register (RDSR)	
9-7.	Read Configuration Register (RDCR)	
	Table 6. Configuration Register Table	
9-8.	Write Status Register (WRSR)	
	Table 7. Protection Modes	
9-9.	Read Data Bytes (READ)	
9-10.	Read Data Bytes at Higher Speed (FAST_READ)	
9-11.	Dual Output Read Mode (DREAD)	
9-12.	2 x I/O Read Mode (2READ)	
9-13.		
9-14.		
	Performance Enhance Mode	
	Performance Enhance Mode Reset	
	Sector Erase (SE)	
	Block Erase (BE32K)	
	Block Erase (BE)	
	Chip Erase (CE)	
9-21.		
9-22.	4 x I/O Page Program (4PP) Deep Power-down (DP)	
	Enter Secured OTP (ENSO)	
	Exit Secured OTP (ENSO)	
3-20.		

	9-26.	Read Security Register (RDSCUR)	
	9-27.	Write Security Register (WRSCUR)	
		Table 8. Security Register Definition	50
	9-28.	Program/Erase Suspend/Resume	
	9-29.	Erase Suspend	
	9-30.	Program Suspend	
	9-31.	Write-Resume	
	9-32.	No Operation (NOP)	
	9-33.	Software Reset (Reset-Enable (RSTEN) and Reset (RST))	
	9-34.	Read SFDP Mode (RDSFDP)	
		Table 9. Signature and Parameter Identification Data Values	56
		Table 10. Parameter Table (0): JEDEC Flash Parameter Tables	58
		Table 11. Parameter Table (1): 4-Byte Instruction Tables	65
		Table 12. RPMC Parameter	67
		Table 13. Parameter Table (2): Macronix Flash Parameter Tables	68
	9-35.	Write Root Key Register (9Bh + 00h)	
	9-36.	Update HMAC Key Register (9Bh + 01h)	71
	9-37.	Increment Monotonic Counter (9Bh + 02h)	
	9-38.	Request Monotonic Counter (9Bh + 03h)	
	9-39.	Reserved Commands (9Bh + 04h~FFh)	74
	9-40.	Read Monotonic Counter Status/Data (96h)	
10.	POWE	R-ON STATE	75
11.	ELEC	TRICAL SPECIFICATIONS	76
		Table 14. ABSOLUTE MAXIMUM RATINGS	
		Table 15. CAPACITANCE TA = 25°C, f = 1.0 MHz	76
	11-1.	Output Driving Strength	
		Table 16. DC CHARACTERISTICS	
		Table 17. AC CHARACTERISTICS	79
12.	OPER	ATING CONDITIONS	
		Table 18. Power-Up/Down Voltage and Timing	
	12-1.	INITIAL DELIVERY STATE	
13.			
14.	DATA	RETENTION	
-		RING INFORMATION	-
		NAME DESCRIPTION	
		AGE INFORMATION	
		ION HISTORY	

3V 128M-BIT [x 1/x 2/x 4] CMOS MXSMIO[®] (SERIAL MULTI I/O) **RPMC FLASH MEMORY**

1. FEATURES

GENERAL

- Supports Serial Peripheral Interface -- Mode 0 and Mode 3
- Single Power Supply Operation - 2.7 to 3.6 volt for read, erase, and program operations
- 128Mb: 134,217,728 x 1 bit structure or 67,108,864 x 2 bits (two I/O mode) structure or 33,554,432 x 4 bits (four I/O mode) structure
- Protocol Support
 - Single I/O, Dual I/O and Quad I/O
- Latch-up protected to 100mA from -1V to Vcc +1V
- · Fast read for SPI mode - Support fast clock frequency for read operation as 104MHz
 - Support Fast Read, 2READ, DREAD, 4READ, **QREAD** instructions
- Permanently fixed QE bit (The Quad Enable bit); QE=1 and 4 I/O mode is always enabled.
- Equal Sectors with 4K byte each, or Equal Blocks with 32K byte each or Equal Blocks with 64K byte each
 - Any Block can be erased individually
- · Programming :
 - 256byte page buffer
 - Quad Input/Output page program(4PP) to enhance program performance
- Typical 100,000 erase/program cycles
- 20 years data retention

RPMC FEATURES

- Support Replay Protection Monotonic Counter (RPMC)
 - Four 32-bit Monotonic counters
 - Volatile HMAC Key register
 - Non-volatile Root Key register

SOFTWARE FEATURES

- Input Data Format
 - 1-byte Command code
- Block lock protection
 - The BP0-BP3 and T/B status bits define the size of the area to be protected against program and erase instructions
- Additional 4K bit security OTP
 - Features unique identifier
 - Factory locked identifiable, and customer lockable
- **Command Reset**
- Program/Erase Suspend and Resume operation
- **Electronic Identification** - JEDEC 1-byte manufacturer ID and 2-byte device ID
 - RES command for 1-byte Device ID
 - REMS command for 1-byte manufacturer ID and 1-byte device ID
- Support Serial Flash Discoverable Parameters (SFDP) mode

HARDWARE FEATURES

- SCLK Input
- Serial clock input
- SI/SIO0
 - Serial Data Input/Output
- SO/SIO1
 - Serial Data Input/Output
- SIO2
 - Serial Data Input/Output
- SIO3
 - Serial Data input/Output
- PACKAGE
 - 8-pin SOP (200mil)
 - 8-land WSON (6x5mm)
 - 8-land WSON (8x6mm 3.4 x 4.3EP)
 - All devices are RoHS Compliant and Halogenfree

2. GENERAL DESCRIPTION

MX77L12850F is 128Mb bits Serial NOR Flash memory, which is configured as 16,777,216 x 8 internally. When it is in two or four I/O mode, the structure becomes 67,108, 864 bits x 2 or 33,554,432 bits x 4.

MX77L12850F feature a serial peripheral interface and software protocol allowing operation on a simple 3-wire bus while it is in single I/O mode. The three bus signals are a clock input (SCLK), a serial data input (SI), and a serial data output (SO). Serial access to the device is enabled by CS# input.

When it is in two I/O read mode, the SI pin and SO pin become SIO0 pin and SIO1 pin for address/dummy bits input and data output. When it is in four I/O read mode, the SI pin and SO pin become SIO0 pin and SIO1 pin for address/dummy bits input and data output.

The MX77L12850F MXSMIO[®] (Serial Multi I/O) provides sequential read operation on the whole chip.

After program/erase command is issued, auto program/erase algorithms which program/erase and verify the specified page or sector/block locations will be executed. Program command is executed on byte basis, or page (256 bytes) basis, or word basis for erase command is executed on sector (4K-byte), block (32K-byte), or block (64K-byte), or whole chip basis.

To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read command can be issued to detect completion status of a program or erase operation via WIP bit.

When the device is not in operation and CS# is high, it is put in standby mode.

The MX77L12850F utilizes Macronix's proprietary memory cell, which reliably stores memory contents even after 100,000 program and erase cycles.

3. PIN CONFIGURATIONS

8-PIN SOP (200mil)

8-WSON (6x5mm) / 8-WSON (8x6mm)

4. PIN DESCRIPTION

SYMBOL	DESCRIPTION
CS#	Chip Select
SI/SIO0	Serial Data Input & Output
SO/SIO1	Serial Data Input & Output
SCLK	Clock Input
SIO2	Serial Data Input & Output
SIO3	Serial Data Input & Output
VCC	+ 3V Power Supply
GND	Ground

5. BLOCK DIAGRAM

6. DATA PROTECTION

During power transition, there may be some false system level signals which result in inadvertent erasure or programming. The device is designed to protect itself from these accidental write cycles.

The state machine will be reset as standby mode automatically during power up. In addition, the control register architecture of the device constrains that the memory contents can only be changed after specific command sequences have completed successfully.

In the following, there are several features to protect the system from the accidental write cycles during VCC powerup and power-down or from system noise.

- Valid command length checking: The command length will be checked whether it is at byte base and completed on byte boundary.
- Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before other command to change data.
- Deep Power Down Mode: By entering deep power down mode, the flash device also is under protected from writing all commands except Release from deep power down mode command (RDP) and Read Electronic Signature command (RES), and softreset command.

I. Block lock protection

- The Software Protected Mode (SPM) use (BP3, BP2, BP1, BP0 and T/B) bits to allow part of memory to be protected as read only. The protected area definition is shown as "Table 1. Protected Area Sizes", the protected areas are more flexible which may protect various area by setting value of BP0-BP3 bits.

Table 1. Protected Area Sizes

Status bit				Protect Level		
BP3	BP2	BP1	BP0	128Mb		
0	0	0	0	0 (none)		
0	0	0	1	1 (1 block, protected block 255th)		
0	0	1	0	2 (2 blocks, block 254th-255th)		
0	0	1	1	3 (4 blocks, block 252nd-255th)		
0	1	0	0	4 (8 blocks, block 248th-255th)		
0	1	0	1	5 (16 blocks, block 240th-255th)		
0	1	1	0	6 (32 blocks, block 224th-255th)		
0	1	1	1	7 (64 blocks, block 192nd-255th)		
1	0	0	0	8 (128 blocks, block 128th-255th)		
1	0	0	1	9 (256 blocks, protected all)		
1	0	1	0	10 (256 blocks, protected all)		
1	0	1	1	11 (256 blocks, protected all)		
1	1	0	0	12 (256 blocks, protected all)		
1	1	0	1	13 (256 blocks, protected all)		
1	1	1	0	14 (256 blocks, protected all)		
1	1	1	1	15 (256 blocks, protected all)		

Protected Area Sizes (T/B bit = 0)

Protected Area Sizes (T/B bit = 1)

	Statu	ıs bit		Protect Level		
BP3	BP2	BP1	BP0	128Mb		
0	0	0	0	0 (none)		
0	0	0	1	1 (1 block, protected block 0th)		
0	0	1	0	2 (2 blocks, protected block 0th-1st)		
0	0	1	1	3 (4 blocks, protected block 0th-3rd)		
0	1	0	0	4 (8 blocks, protected block 0th-7th)		
0	1	0	1	5 (16 blocks, protected block 0th-15th)		
0	1	1	0	6 (32 blocks, protected block 0th-31st)		
0	1	1	1	7 (64 blocks, protected block 0th-63rd)		
1	0	0	0	8 (128 blocks, protected block 0th-127th)		
1	0	0	1	9 (256 blocks, protected all)		
1	0	1	0	10 (256 blocks, protected all)		
1	0	1	1	11 (256 blocks, protected all)		
1	1	0	0	12 (256 blocks, protected all)		
1	1	0	1	13 (256 blocks, protected all)		
1	1	1	0	14 (256 blocks, protected all)		
1	1	1	1	15 (256 blocks, protected all)		

II. Additional 4K-bit secured OTP for unique identifier: to provide 4K-bit one-time program area for setting device unique serial number - Which may be set by factory or system customer.

- Security register bit 0 indicates whether the Secured OTP area is locked by factory or not.

- To program the 4K-bit secured OTP by entering 4K-bit secured OTP mode (with Enter Security OTP command), and going through normal program procedure, and then exiting 4K-bit secured OTP mode by writing Exit Security OTP command.

- Customer may lock-down the customer lockable secured OTP by writing WRSCUR(write security register) command to set customer lock-down bit1 as "1". Please refer to *"Table 8. Security Register Definition"* for security register bit definition and *"Table 2. 4K-bit Secured OTP Definition"* for address range definition.

- Note: Once lock-down whatever by factory or customer, it cannot be changed any more. While in 4K-bit secured OTP mode, array access is not allowed.

Table 2. 4K-bit Secured OTP Definition

Address range Size		Standard Factory Lock	Customer Lock
xxx000~xxx00F	128-bit	ESN (electrical serial number)	Determined by systemer
xxx010~xxx1FF	3968-bit	N/A	Determined by customer

7. Memory Organization

Table 3. Memory Organization

Block(64K-byte)	Block(32K-byte)	Sector	Address Range		
		4095	FFF000h	FFFFFh	
	511				
255		4088	FF8000h	FF8FFFh	
200		4087	FF7000h	FF7FFFh	
	510				
		4080	FF0000h	FF0FFFh	
		4079	FEF000h	FEFFFFh	
	509				
254		4072	FE8000h	FE8FFFh	
204	508	4071	FE7000h	FE7FFFh	
		4064	FE0000h	FE0FFFh	
		4063	FDF000h	FDFFFFh	
	507				
253		4056	FD8000h	FD8FFFh	
200		4055	FD7000h	FD7FFFh	
	506				
		4048	FD0000h	FD0FFFh	

		47	02F000h	02FFFFh
	5			
2		40	028000h	028FFFh
		39	027000h	027FFFh
	4			
		32	020000h	020FFFh
		31	01F000h	01FFFFh
	3			
1		24	018000h	018FFFh
1		23	017000h	017FFFh
	2			
		16	010000h	010FFFh
		15	00F000h	00FFFFh
	1	:		
		8	008000h	008FFFh
0		7	007000h	007FFFh
	0			
		0	000000h	000FFFh

8. DEVICE OPERATION

- 1. Before a command is issued, status register should be checked to ensure device is ready for the intended operation.
- 2. When incorrect command is inputted to this device, this device becomes standby mode and keeps the standby mode until next CS# falling edge. In standby mode, SO pin of this device should be High-Z.
- 3. When correct command is inputted to this device, this device becomes active mode and keeps the active mode until next CS# rising edge.
- 4. Input data is latched on the rising edge of Serial Clock (SCLK) and data shifts out on the falling edge of SCLK. The difference of Serial mode 0 and mode 3 is shown as "Serial Modes Supported".
- 5. For the following instructions: RDID, RDSR, RDSCUR, READ, FAST_READ, 2READ, DREAD, 4READ, QREAD, RDSFDP, RES, REMS, RDCR the shifted-in instruction sequence is followed by a data-out sequence. After any bit of data being shifted out, the CS# can be high. For the following instructions: WREN, WRDI, WRSR, SE, BE32K, BE, CE, PP, 4PP, DP, ENSO, EXSO, WRSCUR, SUSPEND, RESUME, NOP, RSTEN, RST the CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.
- 6. During the progress of Write Status Register, Program, Erase operation, to access the memory array is neglected and not affect the current operation of Write Status Register, Program, Erase.

Figure 1. Serial Modes Supported

Note:

CPOL indicates clock polarity of Serial master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while not transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which Serial mode is supported.

Figure 2. Serial Input Timing

Figure 3. Output Timing

9. COMMAND DESCRIPTION

Table 4. Command Set

			Addres	ss Byte				
	Command Code	Total ADD Byte	Byte 1	Byte 2	Byte 3	Dummy Cycle	Data Byte	
Array access								
READ (normal read)	03 (hex)	3	ADD1	ADD2	ADD3	0	1- ∞	
FAST READ (fast read data)	0B (hex)	3	ADD1	ADD2	ADD3	8 *	1- ∞	
2READ (2 x I/O read command)	BB (hex)	3	ADD1	ADD2	ADD3	4 *	1- ∞	
DREAD (1I 2O read)	3B (hex)	3	ADD1	ADD2	ADD3	8 *	1- ∞	
4READ (4 I/O read)	EB (hex)	3	ADD1	ADD2	ADD3	6 *	1- ∞	
QREAD (1I 4O read)	6B (hex)	3	ADD1	ADD2	ADD3	8 *	1- ∞	
PP (page program)	02 (hex)	3	ADD1	ADD2	ADD3	0	1-256	
4PP (quad page program)	38 (hex)	3	ADD1	ADD2	ADD3	0	1-256	
SE (sector erase)	20 (hex)	3	ADD1	ADD2	ADD3	0	0	
BE 32K (block erase 32KB)	52 (hex)	3	ADD1	ADD2	ADD3	0	0	
BE (block erase 64KB)	D8 (hex)	3	ADD1	ADD2	ADD3	0	0	
CE (chip erase)	60 or C7 (hex)	0				0	0	

* Dummy cycle numbers will be different depending on the bit6 & bit 7 (DC0 & DC1) setting in configuration register.

			Addres				
	Command Code	Total ADD Byte	Byte 1	Byte 2	Byte 3	Dummy Cycle	Data Byte
Device operation							
WREN (write enable)	06 (hex)	0				0	0
WRDI (write disable)	04 (hex)	0				0	0
PGM/ERS Suspend (Suspends Program/ Erase)	B0 (hex)	0				0	0
PGM/ERS Resume (Resumes Program/ Erase)	30 (hex)	0				0	0
DP (Deep power down)	B9 (hex)	0				0	0
RDP (Release from deep power down)	AB (hex)	0				0	0
NOP (No Operation)	00 (hex)	0				0	0
RSTEN (Reset Enable)	66 (hex) (Note2)	0				0	0
RST (Reset Memory)	99 (hex) (Note2)	0				0	0

			Addres				
	Command Code	Total ADD Byte	Byte 1	Byte 2	Byte 3	Dummy Cycle	Data Byte
Register Access							
RDID (read identification)	9F (hex)	0				0	3
RES (read electronic ID)	AB (hex)	0	Dummy	Dummy	Dummy	3	1
REMS (read electronic manufacturer & device ID)	90 (hex)	1	Dummy	Dummy	ADD1	2	2
RDSFDP (Read SFDP Table)	5A (hex)	3	ADD1	ADD2	ADD3	8	0
RDSR (read status register)	05 (hex)	0				0	1
RDCR (read configuration register)	15 (hex)	0				0	1
WRSR (write status register)	01 (hex)	0				0	1-2
RDSCUR (read security register)	2B (hex)	0				0	1
WRSCUR (write security register)	2F (hex)	0				0	0
ENSO (enter secured OTP)	B1 (hex)	0				0	0
EXSO (exit secured OTP)	C1 (hex)	0				0	0

Note 1: It is not recommended to adopt any other code/address not in the command definition table, which will potentially enter the hidden mode.

Note 2: The RSTEN command must be executed before executing the RST command. If any other command is issued in-between RSTEN and RST, the RST command will be ignored.

	Command Code	Byte 1	Byte 2	Byte 3	Byte 4 ~ Byte n	Byte n+1
Write Root Key Register	ite Root Key Register 98 (hex) ()() (hex)		CounterAddr [7:0]	Reserved [7:0]	Byte 4 - 35 RootKey [255:0]	Byte 36 - 63 TruncatedSign [223:0]
Update HMAC Key Register	9B (hex)	01 (hex)	CounterAddr [7:0]	Reserved [7:0]	Byte 4 - 7 KeyData [31:0]	Byte 8 - 39 Signature [255:0]
Increment Monotonic Counter	9B (hex)	02 (hex)	CounterAddr [7:0]	Reserved [7:0]	Byte 4 - 7 CounterData [31:0]	Byte 8 - 39 Signature [255:0]
Request Monotonic Counter	Request Monotonic Counter 98 (hex) 1 (13 (hex) 1		CounterAddr [7:0]	Reserved [7:0]	Byte 4 - 15 Tag [95:0]	Byte 16 - 47 Signature [255:0]
Reserved Commands	9B (hex)	04~FF (hex)			Reserved	
Read Monotonic Counter Status / Data	96 (hex)	dummy	MC Status [7:0]	BYTE 3 - 14 Tag [95:0]	BYTE 15 - 18 CounterData [31:0]	BYTE 19 - 50 Signature [255:0]

9-1. Write Enable (WREN)

The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP, 4PP, SE, BE32K, BE, CE, WRSCUR and WRSR, which are intended to change the device content WEL bit should be set every time after the WREN instruction setting the WEL bit.

The sequence of issuing WREN instruction is: CS# goes low \rightarrow sending WREN instruction code \rightarrow CS# goes high.

Figure 4. Write Enable (WREN) Sequence

9-2. Write Disable (WRDI)

The Write Disable (WRDI) instruction is to reset Write Enable Latch (WEL) bit.

The sequence of issuing WRDI instruction is: CS# goes low \rightarrow sending WRDI instruction code \rightarrow CS# goes high.

The WEL bit is reset by following situations:

- Power-up
- WRDI command completion
- WRSR command completion
- PP command completion
- 4PP command completion
- SE command completion
- BE32K command completion
- BE command completion
- CE command completion
- PGM/ERS Suspend command completion
- Reset command completion
- WRSCUR command completion

Figure 5. Write Disable (WRDI) Sequence

9-3. Read Identification (RDID)

The RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The Macronix Manufacturer ID and Device ID are listed as "*Table 5. ID Definitions*".

The sequence of issuing RDID instruction is: CS# goes low \rightarrow sending RDID instruction code \rightarrow 24-bits ID data out on SO \rightarrow to end RDID operation can drive CS# to high at any time during data out.

While Program/Erase operation is in progress, it will not decode the RDID instruction, therefore there's no effect on the cycle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby stage.

Table 5. ID Definitions

Command Type		MX77L12850F				
RDID	9Fh	Manufacturer ID	Memory type	Memory density		
		C2	75	18		
RES	ABh	Electronic ID				
			17			
REMS	90h	Manufacturer ID	Device ID			
		C2	17			

9-4. Release from Deep Power-down (RDP), Read Electronic Signature (RES)

The Release from Deep Power-down (RDP) instruction is completed by driving Chip Select (CS#) High. When Chip Select (CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the Deep Power-down mode, the transition to the Stand-by Power mode is immediate. If the device was previously in the Deep Power-down mode, though, the transition to the Stand-by Power mode is delayed by tRES1, and Chip Select (CS#) must remain High for at least tRES1(max), as specified in *"Table 17. AC CHARACTERISTICS"*. Once in the Stand-by Power mode, the device waits to be selected, so that it can receive, decode and execute instructions. The RDP instruction is only for releasing from Deep Power Down Mode.

RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as *"Table 5. ID Definitions"*. This is not the same as RDID instruction. It is not recommended to use for new design. For new design, please use RDID instruction.

Even in Deep power-down mode, the RDP and RES are also allowed to be executed, only except the device is in progress of program/erase/write cycle; there's no effect on the current program/erase/write cycle in progress.

The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeatedly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously in Deep Power-down mode, the device transition to standby mode is immediate. If the device was previously in Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at least tRES2(max). Once in the standby mode, the device waits to be selected, so it can be receive, decode, and execute instruction.

Figure 7. Read Electronic Signature (RES) Sequence

9-5. Read Electronic Manufacturer ID & Device ID (REMS)

The REMS instruction returns both the JEDEC assigned manufacturer ID and the device ID. The Device ID values are listed in *"Table 5. ID Definitions"*.

The REMS instruction is initiated by driving the CS# pin low and sending the instruction code "90h" followed by two dummy bytes and one address byte (A7~A0). After which the manufacturer ID for Macronix (C2h) and the device ID are shifted out on the falling edge of SCLK with the most significant bit (MSB) first. If the address byte is 00h, the manufacturer ID will be output first, followed by the device ID. If the address byte is 01h, then the device ID will be output first, followed by the CS# is low, the manufacturer and device IDs can be read continuously, alternating from one to the other. The instruction is completed by driving CS# high.

Figure 9. Read Electronic Manufacturer & Device ID (REMS) Sequence

Notes:

(1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first.

9-6. Read Status Register (RDSR)

The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even in program/erase/write status register condition). It is recommended to check the Write in Progress (WIP) bit before sending a new instruction when a program, erase, or write status register operation is in progress.

The sequence of issuing RDSR instruction is: CS# goes low \rightarrow sending RDSR instruction code \rightarrow Status Register data out on SO.

9-7. Read Configuration Register (RDCR)

The RDCR instruction is for reading Configuration Register Bits. The Read Configuration Register can be read at any time (even in program/erase/write configuration register condition). It is recommended to check the Write in Progress (WIP) bit before sending a new instruction when a program, erase, or write configuration register operation is in progress.

The sequence of issuing RDCR instruction is: CS# goes low \rightarrow sending RDCR instruction code \rightarrow Configuration Register data out on SO.

For user to check if Program/Erase operation is finished or not, RDSR instruction flow are shown as follows:

Status Register

The definition of the status register bits is as below:

WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status register progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/write status register cycle.

WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable latch. When WEL bit sets to 1, which means the internal write enable latch is set, the device can accept program/ erase/write status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the device will not accept program/erase/write status register instruction. The program/erase command will be ignored if it is applied to a protected memory area. To ensure both WIP bit & WEL bit are both set to 0 and available for next program/erase/operations, WIP bit needs to be confirm to be 0 before polling WEL bit. After WIP bit confirmed, WEL bit needs to be confirm to be 0.

BP3, BP2, BP1, BP0 bits. The Block Protect (BP3, BP2, BP1, BP0) bits, non-volatile bits, indicate the protected area (as defined in *"Table 1. Protected Area Sizes"*) of the device to against the program/erase instruction without hardware protection mode being set. To write the Block Protect (BP3, BP2, BP1, BP0) bits requires the Write Status Register (WRSR) instruction to be executed. Those bits define the protected area of the memory to against Page Program (PP), Sector Erase (SE), Block Erase 32KB (BE32K), Block Erase (BE) and Chip Erase (CE) instructions (only if Block Protect bits (BP3:BP0) set to 0, the CE instruction can be executed). The BP3, BP2, BP1, BP0 bits are "0" as default. Which is un-protected.

QE bit. The Quad Enable (QE) bit, a non-volatile OTP bit which is permanently set to "1". The flash always performs Quad I/O mode.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Reserved	QE (Quad Enable)	BP3 (level of protected block)	BP2 (level of protected block)	BP1 (level of protected block)	BP0 (level of protected block)	WEL (write enable latch)	WIP (write in progress bit)
-	1=Quad Enable (note 2)	(note 1)	(note 1)	(note 1)	(note 1)	1=write enable 0=not write enable	1=write operation 0=not in write operation
-	OTP	Non-volatile bit	Non-volatile bit	Non-volatile bit	Non-volatile bit	volatile bit	volatile bit

Status Register

Notes:

1. See the "Table 1. Protected Area Sizes".

2. The QE bit is set by factory default, and can not be changed permanently.

Configuration Register

The Configuration Register is able to change the default status of Flash memory. Flash memory will be configured after the CR bit is set.

TB bit

The Top/Bottom (TB) bit is a non-volatile OTP bit. The Top/Bottom (TB) bit is used to configure the Block Protect area by BP bit (BP3, BP2, BP1, BP0), starting from TOP or Bottom of the memory array. The TB bit is defaulted as "0", which means Top area protect. When it is set as "1", the protect area will change to Bottom area of the memory device. To write the TB bits requires the Write Status Register (WRSR) instruction to be executed.

Table 6. Configuration Register Table

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Reserved	Reserved	Reserved	Reserved	TB (top/bottom selected)	Reserved	Reserved	Reserved
x	x	x	x	0=Top area protect 1=Bottom area protect (Default=0)	x	x	x
х	Х	х	х	OTP	Х	Х	х

9-8. Write Status Register (WRSR)

The WRSR instruction is for changing the values of Status Register Bits and Configuration Register Bits. Before sending WRSR instruction, the Write Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in advance. The WRSR instruction can change the value of Block Protect (BP3, BP2, BP1, BP0) bits to define the protected area of memory (as shown in *"Table 1. Protected Area Sizes"*), but has no effect on bit1(WEL) and bit0 (WIP) of the status register.

The sequence of issuing WRSR instruction is: CS# goes low \rightarrow sending WRSR instruction code \rightarrow Status Register data on SI \rightarrow CS# goes high.

The CS# must go high exactly at the 8 bits or 16 bits data boundary; otherwise, the instruction will be rejected and not executed. The self-timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Write Status Register cycle is in progress. The WIP sets 1 during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write Enable Latch (WEL) bit is reset.

Figure 14. Write Status Register (WRSR) Sequence

Note : The CS# must go high exactly at 8 bits or 16 bits data boundary to completed the write register command.

Software Protected Mode (SPM):

- The WREN instruction may set the WEL bit and can change the values of BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1, BP0 and T/B bit, is at software protected mode (SPM).

Table 7. Protection Modes

Mode	Status register condition	Memory
Software protection mode (SPM)	Status register can be written in (WEL bit is set to "1") and the BP0-BP3 bits can be changed	The protected area cannot be programmed or erased.

Note:

1. As defined by the values in the Block Protect (BP3, BP2, BP1, BP0) bits of the Status Register, as shown in *"Table 1. Protected Area Sizes"*.

Figure 15. WRSR flow

9-9. Read Data Bytes (READ)

The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on the falling edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single READ instruction. The address counter rolls over to 0 when the highest address has been reached.

The sequence of issuing READ instruction is: CS# goes low \rightarrow sending READ instruction code \rightarrow 3-byte address on SI \rightarrow data out on SO \rightarrow to end READ operation can use CS# to high at any time during data out.

Figure 16. Read Data Bytes (READ) Sequence

9-10. Read Data Bytes at Higher Speed (FAST_READ)

The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when the highest address has been reached.

The sequence of issuing FAST_READ instruction is: CS# goes low \rightarrow sending FAST_READ instruction code \rightarrow 3-byte address on SI \rightarrow 8 dummy cycles \rightarrow data out on SO \rightarrow to end FAST_READ operation can use CS# to high at any time during data out.

While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle.

Figure 17. Read at Higher Speed (FAST_READ) Sequence

9-11. Dual Output Read Mode (DREAD)

The DREAD instruction enable double throughput of Serial NOR Flash in read mode. The address is latched on rising edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a maximum frequency fT. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single DREAD instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing DREAD instruction, the following data out will perform as 2-bit instead of previous 1-bit.

The sequence of issuing DREAD instruction is: CS# goes low \rightarrow sending DREAD instruction \rightarrow 3-byte address on SIO0 \rightarrow 8 dummy cycles on SIO0 \rightarrow data out interleave on SIO1 & SIO0 \rightarrow to end DREAD operation can use CS# to high at any time during data out.

While Program/Erase/Write Status Register cycle is in progress, DREAD instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle.

Figure 18. Dual Read Mode Sequence

9-12. 2 x I/O Read Mode (2READ)

The 2READ instruction enable double throughput of Serial NOR Flash in read mode. The address is latched on rising edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a maximum frequency fT. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single 2READ instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing 2READ instruction, the following address/dummy/data out will perform as 2-bit instead of previous 1-bit.

The sequence of issuing 2READ instruction is: CS# goes low \rightarrow sending 2READ instruction \rightarrow 3-byte address interleave on SIO1 & SIO0 \rightarrow 4 dummy cycles on SIO1 & SIO0 \rightarrow data out interleave on SIO1 & SIO0 \rightarrow to end 2READ operation can use CS# to high at any time during data out.

While Program/Erase/Write Status Register cycle is in progress, 2READ instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle.

Figure 19. 2 x I/O Read Mode Sequence

9-13. Quad Read Mode (QREAD)

The QREAD instruction enable quad throughput of Serial NOR Flash in read mode. The address is latched on rising edge of SCLK, and data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a maximum frequency fQ. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single QREAD instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing QREAD instruction, the following data out will perform as 4-bit instead of previous 1-bit.

The sequence of issuing QREAD instruction is: CS# goes low \rightarrow sending QREAD instruction \rightarrow 3-byte address on SI \rightarrow 8 dummy cycle \rightarrow data out interleave on SIO3, SIO2, SIO1 & SIO0 \rightarrow to end QREAD operation can use CS# to high at any time during data out.

While Program/Erase/Write Status Register cycle is in progress, QREAD instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle.

Figure 20. Quad Read Mode Sequence

9-14. 4 x I/O Read Mode (4READ)

The 4READ instruction enable quad throughput of Serial NOR Flash in read mode. The address is latched on rising edge of SCLK, and data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a maximum frequency fQ. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single 4READ instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing 4READ instruction, the following address/dummy/data out will perform as 4-bit instead of previous 1-bit.

The sequence of issuing 4READ instruction is: CS# goes low \rightarrow sending 4READ instruction \rightarrow 3-byte address interleave on SIO3, SIO2, SIO1 & SIO0 \rightarrow 6 dummy cycles \rightarrow data out interleave on SIO3, SIO2, SIO1 & SIO0 \rightarrow to end 4READ operation can use CS# to high at any time during data out.

While Program/Erase/Write Status Register cycle is in progress, 4READ instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle.

Figure 21. 4 x I/O Read Mode Sequence

Notes:

- 1. Hi-impedance is inhibited for the two clock cycles.
- 2. P7≠P3, P6≠P2, P5≠P1 & P4≠P0 (Toggling) is inhibited.

9-15. Performance Enhance Mode

The device could waive the command cycle bits if the two cycle bits after address cycle toggles.

The "EBh" commands support enhance mode. The performance enhance mode is not supported in dual I/O mode.

To enter performance-enhancing mode, P[7:4] must be toggling with P[3:0]; likewise P[7:0]=A5h, 5Ah, F0h or 0Fh can make this mode continue and skip the next 4READ instruction. To leave enhance mode, P[7:4] is no longer toggling with P[3:0]; likewise P[7:0]=FFh, 00h, AAh or 55h along with CS# is afterwards raised and then lowered. Issuing "FFh" command can also exit enhance mode. The system then will leave performance enhance mode and return to normal operation.

After entering enhance mode, following CS# go high, the device will stay in the read mode and treat CS# go low of the first clock as address instead of command cycle.

Another sequence of issuing 4READ instruction especially useful in random access is : CS# goes low->sending 4 READ instruction->3-bytes address interleave on SIO3, SIO2, SIO1 & SIO0 ->performance enhance toggling bit $P[7:0] \rightarrow 4$ dummy cycles ->data out still CS# goes high -> CS# goes low (reduce 4 Read instruction) -> 3-bytes random access address.

Notes:

1. If not using performance enhance recommend to keep 1 or 0 in performance enhance indicator.

9-16. Performance Enhance Mode Reset

To conduct the Performance Enhance Mode Reset operation in SPI mode, FFh data cycle, 8 clocks, should be issued in 1I/O sequence.

If the system controller is being Reset during operation, the flash device will return to the standard SPI operation.

9-17. Sector Erase (SE)

The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". The instruction is used for any 4K-byte sector. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Sector Erase (SE). Any address of the sector (see *"Table 3. Memory Organization"*) is a valid address for Sector Erase (SE) instruction. The CS# must go high exactly at the byte boundary (the least significant bit of the address byte been latched-in); otherwise, the instruction will be rejected and not executed.

Address bits [Am-A12] (Am is the most significant address) select the sector address.

The sequence of issuing SE instruction is: CS# goes low \rightarrow sending SE instruction code \rightarrow 3-byte address on SI \rightarrow CS# goes high.

The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be checked while the Sector Erase cycle is in progress. The WIP sets 1 during the tSE timing, and clears when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If the Block is protected by BP bits (Block Protect Mode), the Sector Erase (SE) instruction will not be executed on the block.

Figure 24. Sector Erase (SE) Sequence

9-18. Block Erase (BE32K)

The Block Erase (BE32K) instruction is for erasing the data of the chosen block to be "1". The instruction is used for 32K-byte block erase operation. A Write Enable (WREN) instruction be executed to set the Write Enable Latch (WEL) bit before sending the Block Erase (BE32K). Any address of the block (see *"Table 3. Memory Organization"*) is a valid address for Block Erase (BE32K) instruction. The CS# must go high exactly at the byte boundary (the least significant bit of address byte been latched-in); otherwise, the instruction will be rejected and not executed.

The sequence of issuing BE32K instruction is: CS# goes low \rightarrow sending BE32K instruction code \rightarrow 3-byte address on SI \rightarrow CS# goes high.

The self-timed Block Erase Cycle time (tBE32K) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be checked while during the Block Erase cycle is in progress. The WIP sets during the tBE32K timing, and clears when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If the Block is protected by BP bits (Block Protect Mode), the Block Erase (BE32K) instruction will not be executed on the block.

CS# $SCLK \xrightarrow{Mode 3} 0 1 2 3 4 5 6 7 8 9 29 30 31}_{Mode 0} 24-Bit Address - 424-Bit Address - 424-Bi$

Figure 25. Block Erase 32KB (BE32K) Sequence

9-19. Block Erase (BE)

The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". The instruction is used for 64K-byte block erase operation. A Write Enable (WREN) instruction must be executed to set the Write Enable Latch (WEL) bit before sending the Block Erase (BE). Any address of the block (Please refer to *"Table 3. Memory Organization"*) is a valid address for Block Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the least significant bit of address byte been latched-in); otherwise, the instruction will be rejected and not executed.

The sequence of issuing BE instruction is: CS# goes low \rightarrow sending BE instruction code \rightarrow 3-byte address on SI \rightarrow CS# goes high.

The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be checked while the Block Erase cycle is in progress. The WIP sets during the tBE timing, and clears when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the Block is protected by BP bits (Block Protect Mode), the Block Erase (BE) instruction will not be executed on the block.

Figure 26. Block Erase (BE) Sequence

9-20. Chip Erase (CE)

The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruction must be executed to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). The CS# must go high exactly at the byte boundary, otherwise the instruction will be rejected and not executed.

The sequence of issuing CE instruction is: CS# goes low \rightarrow sending CE instruction code \rightarrow CS# goes high.

The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be checked while the Chip Erase cycle is in progress. The WIP sets during the tCE timing, and clears when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared.

When the chip is under "Block protect (BP) Mode". The Chip Erase(CE) instruction will not be executed, if one (or more) sector is protected by BP3-BP0 bits. It will be only executed when BP3-BP0 all set to "0".

Figure 27. Chip Erase (CE) Sequence

9-21. Page Program (PP)

The Page Program (PP) instruction is for programming memory bits to "0". One to 256 bytes can be sent to the device to be programmed. A Write Enable (WREN) instruction must be executed to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). If more than 256 data bytes are sent to the device, only the last 256 data bytes will be accepted and the previous data bytes will be disregarded. The Page Program instruction requires that all the data bytes fall within the same 256-byte page. The low order address byte A[7:0] specifies the starting address within the selected page. Bytes that will cross a page boundary will wrap to the beginning of the selected page. The device can accept (256 minus A[7:0]) data bytes without wrapping. If 256 data bytes are going to be programmed, A[7:0] should be set to 0.

The sequence of issuing PP instruction is: CS# goes low \rightarrow sending PP instruction code \rightarrow 3-byte address on SI \rightarrow at least 1-byte on data on SI \rightarrow CS# goes high.

The CS# must be kept to low during the whole Page Program cycle; The CS# must go high exactly at the byte boundary(the latest eighth bit of data being latched in), otherwise the instruction will be rejected and will not be executed.

The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be checked while the Page Program cycle is in progress. The WIP sets during the tPP timing, and clears when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If the Block is protected by BP bits (Block Protect Mode), the Page Program (PP) instruction will not be executed.

Figure 28. Page Program (PP) Sequence

9-22. 4 x I/O Page Program (4PP)

The Quad Page Program (4PP) instruction is for programming the memory to be "0". The Quad Page Programming takes four pins: SIO0, SIO1, SIO2, and SIO3 as address and data input, which can improve programmer performance and the effectiveness of application. The other function descriptions are as same as standard page program.

The sequence of issuing 4PP instruction is: CS# goes low \rightarrow sending 4PP instruction code \rightarrow 3-byte address on SIO[3:0] \rightarrow at least 1-byte on data on SIO[3:0] \rightarrow CS# goes high.

If the page is protected by BP bits (Block Protect Mode), the Quad Page Program (4PP) instruction will not be executed.

Figure 29. 4 x I/O Page Program (4PP) Sequence

9-23. Deep Power-down (DP)

The Deep Power-down (DP) instruction places the device into a minimum power consumption state, Deep Powerdown mode, in which the quiescent current is reduced from ISB1 to ISB2.

The sequence of issuing DP instruction: CS# goes low \rightarrow send DP instruction code \rightarrow CS# goes high. The CS# must go high at the byte boundary (after exactly eighth bits of the instruction code have been latched-in); otherwise the instruction will not be executed. SIO[3:1] are "don't care".

After CS# goes high there is a delay of tDP before the device transitions from Stand-by mode to Deep Power-down mode and before the current reduces from ISB1 to ISB2. Once in Deep Power-down mode, all instructions will be ignored except Release from Deep Power-down (RDP).

The device exits Deep Power-down mode and returns to Stand-by mode if it receives a Release from Deep Powerdown (RDP) instruction, power-cycle, or reset. Please refer to *"Figure 8. Release from Deep Power-down (RDP) Sequence"*.

Figure 30. Deep Power-down (DP) Sequence

9-24. Enter Secured OTP (ENSO)

The ENSO instruction is for entering the additional 4K-bit secured OTP mode. While device is in 4K-bit secured OTPmode, main array access is not available. The additional 4K-bit secured OTP is independent from main array and may be used to store unique serial number for system identifier. After entering the Secured OTP mode, follow standard read or program procedure to read out the data or update data. The Secured OTP data cannot be updated again once it is lock-down.

The sequence of issuing ENSO instruction is: CS# goes low \rightarrow sending ENSO instruction to enter Secured OTP mode \rightarrow CS# goes high.

Please note that after issuing ENSO command user can only access secure OTP region with standard read or program procedure. Furthermore, once security OTP is lock down, only read related commands are valid.

9-25. Exit Secured OTP (EXSO)

The EXSO instruction is for exiting the additional 4K-bit secured OTP mode.

The sequence of issuing EXSO instruction is: CS# goes low \rightarrow sending EXSO instruction to exit Secured OTP mode \rightarrow CS# goes high.

9-26. Read Security Register (RDSCUR)

The RDSCUR instruction is for reading the value of Security Register bits. The Read Security Register can be read at any time (even in program/erase/write status register/write security register condition) and continuously.

The sequence of issuing RDSCUR instruction is : CS# goes low \rightarrow sending RDSCUR instruction \rightarrow Security Register data out on SO \rightarrow CS# goes high.

9-27. Write Security Register (WRSCUR)

The WRSCUR instruction is for changing the values of Security Register Bits. The WREN (Write Enable) instruction is required before issuing WRSCUR instruction. The WRSCUR instruction may change the values of bit1 (LDSO bit) for customer to lock-down the 4K-bit Secured OTP area. Once the LDSO bit is set to "1", the Secured OTP area cannot be updated any more.

The sequence of issuing WRSCUR instruction is :CS# goes low \rightarrow sending WRSCUR instruction \rightarrow CS# goes high.

The CS# must go high exactly at the boundary; otherwise, the instruction will be rejected and not executed.

Security Register

The definition of the Security Register bits is as below:

Erase Fail bit. The Erase Fail bit shows the status of last Erase operation. The bit will be set to "1" if the erase operation failed or the erase region was protected. It will be automatically cleared to "0" if the next erase operation succeeds. Please note that it will not interrupt or stop any operation in the flash memory.

Program Fail bit. The Program Fail bit shows the status of the last Program operation. The bit will be set to "1" if the program operation failed or the program region was protected. It will be automatically cleared to "0" if the next program operation succeeds. Please note that it will not interrupt or stop any operation in the flash memory.

Erase Suspend bit. Erase Suspend Bit (ESB) indicates the status of Erase Suspend operation. Users may use ESB to identify the state of flash memory. After the flash memory is suspended by Erase Suspend command, ESB is set to "1". ESB is cleared to "0" after erase operation resumes.

Program Suspend bit. Program Suspend Bit (PSB) indicates the status of Program Suspend operation. Users may use PSB to identify the state of flash memory. After the flash memory is suspended by Program Suspend command, PSB is set to "1". PSB is cleared to "0" after program operation resumes.

Secured OTP Indicator bit. The Secured OTP indicator bit shows the Secured OTP area is locked by factory or not. When it is "0", it indicates non-factory lock; "1" indicates factory-lock.

Lock-down Secured OTP (LDSO) bit. By writing WRSCUR instruction, the LDSO bit may be set to "1" for customer lock-down purpose. However, once the bit is set to "1" (lock-down), the LDSO bit and the 4K-bit Secured OTP area cannot be updated any more. While it is in 4K-bit secured OTP mode, main array access is not allowed.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Reserved	E_FAIL	P_FAIL	Reserved	ESB (Erase Suspend bit)	PSB (Program Suspend bit)	LDSO (indicate if lock-down)	Secured OTP indicator bit
-	0=normal Erase succeed 1=indicate Erase failed (default=0)	0=normal Program succeed 1=indicate Program failed (default=0)	-	0=Erase is not suspended 1= Erase suspended (default=0)	0=Program is not suspended 1= Program suspended (default=0)	0 = not lock- down 1 = lock-down (cannot program/ erase OTP)	0 = non- factory lock 1 = factory lock
Reserved	Volatile bit	Volatile bit	Reserved	Volatile bit	Volatile bit	Non-volatile bit (OTP)	Non-volatile bit (OTP)

Table 8. Security Register Definition

9-28. Program/Erase Suspend/Resume

The device allow the interruption of Sector-Erase, Block-Erase or Page-Program operations and conduct other operations.

After issue suspend command, the system can determine if the device has entered the Erase-Suspended mode through Bit2 (PSB) and Bit3 (ESB) of security register. (please refer to *"Table 8. Security Register Definition"*)

For "Suspend to Read", "Resume to Read", "Resume to Suspend" timing specification please note "Figure 31. Suspend to Read Latency", "Figure 32. Resume to Read Latency" and "Figure 33. Resume to Suspend Latency".

9-29. Erase Suspend

Erase suspend allow the interruption of all erase operations. After the device has entered Erase-Suspended mode, the system can read any sector(s) or Block(s) except those being erased by the suspended erase operation. Reading the sector or Block being erase suspended is invalid.

After erase suspend, WEL bit will be clear, only read related, resume and reset command can be accepted. (including: 03h, 0Bh, 3Bh, 6Bh, BBh, EBh, 5Ah, 06h, 04h, 2Bh, 9Fh, 05h, ABh, 90h, B1h, C1h, B0h, 30h, 66h, 99h, 00h, 15h)

If the system issues an Erase Suspend command after the sector erase operation has already begun, the device will not enter Erase-Suspended mode until 20us time has elapsed.

Erase Suspend Bit (ESB) indicates the status of Erase Suspend operation. Users may use ESB to identify the state of flash memory. After the flash memory is suspended by Erase Suspend command, ESB is set to "1". ESB is cleared to "0" after erase operation resumes.

9-30. Program Suspend

Program suspend allows the interruption of all program operations. After the device has entered Program-Suspended mode, the system can read any sector(s) or Block(s) except those being programmed by the suspended program operation. Reading the sector or Block being program suspended is invalid.

After program suspend, WEL bit will be cleared, only read related, resume and reset command can be accepted. (including: 03h, 0Bh, 3Bh, 6Bh, BBh, EBh, 5Ah, 06h, 04h, 2Bh, 9Fh, 05h, ABh, 90h, B1h, C1h, B0h, 30h, 66h, 99h, 00h, 15h)

Program Suspend Bit (PSB) indicates the status of Program Suspend operation. Users may use PSB to identify the state of flash memory. After the flash memory is suspended by Program Suspend command, PSB is set to "1". PSB is cleared to "0" after program operation resumes.

Figure 31. Suspend to Read Latency

Figure 32. Resume to Read Latency

Figure 33. Resume to Suspend Latency

9-31. Write-Resume

The Write operation is being resumed when Write-Resume instruction issued. ESB or PSB (suspend status bit) in Status register will be changed back to "0".

The operation of Write-Resume is as follows: CS# drives low \rightarrow send write resume command cycle (30H) \rightarrow drive CS# high. By polling Busy Bit in status register, the internal write operation status could be checked to be completed or not. The user may also wait the time lag of tSE, tBE, tPP for Sector-erase, Block-erase or Page-programming. WREN (command "06h") is not required to issue before resume. Resume to another suspend operation requires latency time of 1ms.

Please note that, if "performance enhance mode" is executed during suspend operation, the device can not be resumed. To restart the write command, disable the "performance enhance mode" is required. After the "performance enhance mode" is disabled, the write-resume command is effective.

9-32. No Operation (NOP)

The "No Operation" command is only able to terminate the Reset Enable (RSTEN) command and will not affect any other command.

9-33. Software Reset (Reset-Enable (RSTEN) and Reset (RST))

The Software Reset operation combines two instructions: Reset-Enable (RSTEN) command following a Reset (RST) command. It returns the device to a standby mode. All the volatile bits and settings will be cleared then, which makes the device return to the default status as power on.

To execute Reset command (RST), the Reset-Enable (RSTEN) command must be executed first to perform the Reset operation. If there is any other command to interrupt after the Reset-Enable command, the Reset-Enable will be invalid.

If the Reset command is executed during program or erase operation, the operation will be disabled, the data under processing could be damaged or lost.

The reset time is different depending on the last operation. For details, please refer to "Table 17. AC CHARACTER-ISTICS" for tREADY.

Figure 34. Software Reset Recovery

Note: Refer to "Table 17. AC CHARACTERISTICS" for tREADY.

Figure 35. Reset Sequence

9-34. Read SFDP Mode (RDSFDP)

The Serial Flash Discoverable Parameter (SFDP) standard provides a consistent method of describing the functional and feature capabilities of serial flash devices in a standard set of internal parameter tables. These parameter tables can be interrogated by host system software to enable adjustments needed to accommodate divergent features from multiple vendors. The concept is similar to the one found in the Introduction of JEDEC Standard, JESD68 on CFI.

The sequence of issuing RDSFDP instruction is CS# goes low \rightarrow send RDSFDP instruction (5Ah) \rightarrow send 3 address bytes on SI pin \rightarrow send 1 dummy byte on SI pin \rightarrow read SFDP code on SO \rightarrow to end RDSFDP operation can use CS# to high at any time during data out.

SFDP is a JEDEC Standard, JESD216B.

Figure 36. Read Serial Flash Discoverable Parameter (RDSFDP) Sequence

Table 9. Signature and Parameter Identification Data Values

Description	Comment	Add (h) (Byte)	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
		00h	07:00	53h	53h
SEDD Signatura		01h	15:08	46h	46h
SFDP Signature	Fixed: 50444653h	02h	23:16	44h	44h
		03h	31:24	50h	50h
SFDP Minor Revision Number	Start from 00h	04h	07:00	06h	06h
SFDP Major Revision Number	Start from 01h	05h	15:08	01h	01h
Number of Parameter Headers	This number is 0-based. Therefore, 0 indicates 1 parameter header.	06h	23:16	03h	03h
Unused		07h	31:24	FFh	FFh
ID number (JEDEC)	00h: it indicates a JEDEC specified header.	08h	07:00	00h	00h
Parameter Table Minor Revision Number	Start from 00h	09h	15:08	06h	06h
Parameter Table Major Revision Number	Start from 01h	0Ah	23:16	01h	01h
Parameter Table Length (in double word)	How many DWORDs in the Parameter table	0Bh	31:24	10h	10h
		0Ch	07:00	ADD0(h)	ADD0(h)
Parameter Table Pointer of JEDEC (PTPJ)	First address of JEDEC Flash Parameter table	0Dh	15:08	ADD1(h)	ADD1(h)
		0Eh	23:16	ADD2(h)	ADD2(h)
Unused		0Fh	31:24	FFh	FFh

Description	Comment	Add (h) (Byte)	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
ID number (Macronix manufacturer ID)	it indicates Macronix manufacturer ID	10h	07:00	C2h	C2h
Parameter Table Minor Revision Number	Start from 00h	11h	15:08	00h	00h
Parameter Table Major Revision Number	Start from 01h	12h	23:16	01h	01h
Parameter Table Length (in double word)	How many DWORDs in the Parameter table	13h	31:24	04h	04h
		14h	07:00	ADD0(h)	ADD0(h)
Parameter Table Pointer of Macronix (PTPM)	First address of Macronix Flash Parameter table	15h	15:08	ADD1(h)	ADD1(h)
		16h	23:16	ADD2(h)	ADD2(h)
Unused		17h	31:24	FFh	FFh
ID number (RPMC)	RPMC parameter ID	18h	07:00	03h	03h
Parameter Table Minor Revision Number	Start from 00h	19h	15:08	00h	00h
Parameter Table Major Revision Number	Start from 01h	1Ah	23:16	01h	01h
Parameter Table Length (in double word)	How many DWORDs in the Parameter table	1Bh	31:24	02h	02h
		1Ch	07:00	ADD0(h)	ADD0(h)
Parameter Table Pointer of RPMC (PTPR)	First address of RPMC table	1Dh	15:08	ADD1(h)	ADD1(h)
		1Eh	23:16	ADD2(h)	ADD2(h)
Unused		1Fh	31:24	FFh	FFh
ID number (4-byte Address Instruction)	4-byte Address Instruction parameter ID	20h	07:00	84h	84h
Parameter Table Minor Revision Number	Start from 00h	21h	15:08	00h	00h
Parameter Table Major Revision Number	Start from 01h	22h	23:16	01h	01h
Parameter Table Length (in double word)	How many DWORDs in the Parameter table	23h	31:24	02h	02h
		24h	07:00	ADD0(h)	ADD0(h)
Parameter Table Pointer of 4-byte Address Instruction (PTP4)	First address of 4-byte Address	25h	15:08	ADD1(h)	ADD1(h)
		26h	23:16	ADD2(h)	ADD2(h)
Unused		27h	31:24	FFh	FFh

Note: Parameter Table Pointer Address of Parameter Tables (PTPx) is ADD2 & ADD1 & ADD0. For example, ADD2 = 01h, ADD1 = 02h, ADD0 = 03h, then PTPx Address is 010203h. Please read flash content to get the real PTPx Address.

Table 10. Parameter Table (0): JEDEC Flash Parameter Tables

SFDP Table below is for MX77L12850FM2I40, MX77L12850FZNI40 and MX77L12850FZ4I40

Description	Comment	Byte Add (h) Offset (Note)	DW Add (Bit)	Data (h/b) (Note1)	Data (h)		
Block/Sector Erase sizes	00: Reserved, 01: 4KB erase, 10: Reserved, 11: not supported 4KB erase		01:00	01b			
Write Granularity	0: 1Byte, 1: 64Byte or larger		02	1b			
Write Enable Instruction Required for Writing to Volatile Status Registers	0: not required 1: required 00h to be written to the status register	00h	03	0b	E5h		
Write Enable Instruction Select for Writing to Volatile Status Registers	0: use 50h instruction 1: use 06h instruction Note: If target flash status register is nonvolatile, then bits 3 and 4 must be set to 00b.		6	6	04	0b	
Unused	Contains 111b and can never be changed		07:05	111b			
4KB Erase Instruction		01h	15:08	20h	20h		
(1-1-2) Fast Read (Note2)	0=not supported 1=supported		16	1b			
Address Bytes Number used in addressing flash array	00: 3Byte only, 01: 3 or 4Byte, 10: 4Byte only, 11: Reserved		18:17	00b			
Double Transfer Rate (DTR) Clocking	0=not supported 1=supported		19	0b			
(1-2-2) Fast Read	0=not supported 1=supported	02h	20	1b	F1h		
(1-4-4) Fast Read	0=not supported 1=supported		21	1b			
(1-1-4) Fast Read	0=not supported 1=supported		22	1b			
Unused			23	1b			
Unused		03h	31:24	FFh	FFh		
Flash Memory Density		07h:04h	31:00	07FF FF	FFh		
(1-4-4) Fast Read Number of Wait states (Note3)	0 0000b: Not supported; 0 0100b: 4 0 0110b: 6; 0 1000b: 8; 0 1010b: 10	096	04:00	0 0100b	44h		
(1-4-4) Fast Read Number of Mode Bits (Note4)	Mode Bits: 000b: Not supported; 010b: 2 bits	08h	07:05	010b	4411		
(1-4-4) Fast Read Instruction		09h	15:08	EBh	EBh		
states	0 0000b: Not supported; 0 0100b: 4 0 0110b: 6; 0 1000b: 8; 0 1010b: 10	0Ah	20:16	0 1000b	08h		
(1-1-4) Fast Read Number of Mode Bits	Mode Bits: 000b: Not supported; 010b: 2 bits	0, 11	23:21	000b	0011		
(1-1-4) Fast Read Instruction		0Bh	31:24	6Bh	6Bh		

Note: Address here is offset value. Please refer to Parameter Identification Header in flash to get the starting address.

Description	Comment	Byte Add (h) Offset	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
states	0 0000b: Not supported; 0 0100b: 4 0 0110b: 6; 0 1000b: 8; 0 1010b: 10	0Ch	04:00	0 1000b	08h
(1-1-2) Fast Read Number of Mode Bits	Mode Bits: 000b: Not supported; 010b: 2 bits	0011	07:05	000b	0011
(1-1-2) Fast Read Instruction		0Dh	15:08	3Bh	3Bh
states	0 0000b: Not supported; 0 0100b: 4 0 0110b: 6; 0 1000b: 8; 0 1010b: 10	0Eh	20:16	0 0100b	04h
(1-2-2) Fast Read Number of Mode Bits	Mode Bits: 000b: Not supported; 010b: 2 bits		23:21	000b	0411
(1-2-2) Fast Read Instruction		0Fh	31:24	BBh	BBh
(2-2-2) Fast Read	0=not supported 1=supported		00	0b	
Unused		106	03:01	111b	
(4-4-4) Fast Read	0=not supported 1=supported	10h	04	0b	EEh
Unused			07:05	111b	
Unused		13h:11h	31:08	FFh	FFh
Unused		15h:14h	15:00	FFh	FFh
(2-2-2) Fast Read Number of Wait states	0 0000b: Not supported; 0 0100b: 4 0 0110b: 6; 0 1000b: 8	16h	20:16	0 0000b	00h
(2-2-2) Fast Read Number of Mode Bits	Mode Bits: 000b: Not supported; 010b: 2 bits	1011	23:21	000b	0011
(2-2-2) Fast Read Instruction		17h	31:24	FFh	FFh
Unused		19h:18h	15:00	FFh	FFh
states	0 0000b: Not supported; 0 0100b: 4 0 0110b: 6; 0 1000b: 8; 0 1010b: 10	1Ah	20:16	0 0000b	00h
(4-4-4) Fast Read Number of Mode Bits	Mode Bits: 000b: Not supported; 010b: 2 bits		23:21	000b	0011
(4-4-4) Fast Read Instruction		1Bh	31:24	FFh	FFh
Erase Type 1 Size	Sector/block size = 2^N bytes (Note5) 0Ch: 4KB; 0Fh: 32KB; 10h: 64KB	1Ch	07:00	0Ch	0Ch
Erase Type 1 Erase Instruction		1Dh	15:08	20h	20h
Erase Type 2 Size	Sector/block size = 2^N bytes 00h: N/A; 0Fh: 32KB; 10h: 64KB	1Eh	23:16	0Fh	0Fh
Erase Type 2 Erase Instruction		1Fh	31:24	52h	52h
Erase Type 3 Size	Sector/block size = 2^N bytes 00h: N/A; 0Fh: 32KB; 10h: 64KB	20h	07:00	10h	10h
Erase Type 3 Erase Instruction		21h	15:08	D8h	D8h
Erase Type 4 Size	00h: N/A, This sector type doesn't exist	22h	23:16	00h	00h
Erase Type 4 Erase Instruction		23h	31:24	FFh	FFh

Description	Comment	Byte Add (h) Offset	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
Multiplier from typical erase time to maximum erase time	Multiplier value: 0h~Fh (0~15) Max. time = 2 * (Multiplier + 1) * Typical Time	24h	03:00	0011b	83h
Erase Type 1 Erase Time	Count value: 00h~1Fh (0~31) Typical Time = (Count + 1) * Units		07:04 08	1 1000b	
Typical)	Units 00: 1ms, 01: 16ms 10b: 128ms, 11b: 1s	25h	10:09	00b	41h
	Count value: 00h~1Fh (0~31) Typical Time = (Count + 1) * Units		15:11	0 1000b	
EraseType 2 Erase Time (Typical)	Units 00: 1ms, 01: 16ms 10b: 128ms, 11b: 1s		17:16 01b	01b	
Erase Type 3 Erase Time	Count value: 00h~1Fh (0~31) Typical Time = (Count + 1) * Units	26h	22:18	0 1111b	BDh
(Typical)	Units 00: 1 ms, 01: 16 ms 10b: 128ms, 11b: 1s		24:23	01b	
Erase Type 4 Erase Time	Count value: 00h~1Fh (0~31) Typical Time = (Count + 1) * Units	27h	29:25	0 0000b	00h
(Typical)	Units 00: 1ms, 01: 16ms 10b: 128 ms, 11b: 1 s		31:30	00b	
Multiplier from typical time to max time for Page or byte program	Multiplier value: 0h~Fh (0~15) Max. time = 2 * (Multiplier + 1) *Typical Time	28h	03:00	0010b	82h
Page Program Size	Page size = 2^N bytes 2^8 = 256 bytes, 8h = 1000b		07:04	1000h	
Page Program Time	Count value: 00h~1Fh (0~31) Typical Time = (Count + 1) * Units		12:08	0 0101b	
(Typical)	Units 0: 8us, 1: 64us	29h	13	1b	65h
Byte Program Time, First Byte	Count value: 0h~Fh (0~15) Typical Time = (Count + 1) * Units		15:14 17:16	1001b	
(Typical)	Units 0: 1us, 1: 8us		18	0b	
Byte Program Time, Additional Byte	Count value: 0h~Fh (0~15) Typical Time = (Count + 1) * Units	2Ah	22:19	1001b	4Ah
(Typical)	Units 0: 1us, 1: 8us		23	0b	

Description	Comment	Byte Add (h) Offset	DW Add (Bit)	Data (h/b) (Note1)	Data (h)			
	Count value: 00h~1Fh (0~31)		27:24	0 1001b				
Chip Erase Time	Typical Time = (Count + 1) * Units		28	0 100 10				
(Typical)	Units	2Bh			C9h			
(Typical)	00: 16ms, 01: 256ms	2011	30:29	10b	Call			
	10: 4s, 11: 64s							
Reserved	Reserved: 1b		31	1b				
	 xxx0b: May not initiate a new erase anywhere 	se	e					
	• xx0xb: May not initiate a new page							
	program anywhere							
Prohibited Operations During	• x1xxb: May not initiate a read in		02.00	11005				
Program Suspend	the program suspended		03:00	1100b				
	page size							
	 1xxxb: The erase and program 							
	restrictions in bits 1:0 are							
	sufficient							
	 xxx0b: May not initiate a new erase 							
Prohibited Operations During Erase Suspend	anywhere	2Ch	07:04		CCh			
	 xx1xb: May not initiate a page 							
	program in the erase							
	suspended sector size							
	 xx0xb: May not initiate a page 	r						
	program anywhere			1100b				
	 x1xxb: May not initiate a read in 							
	the erase suspended sector							
	size							
	 1xxxb: The erase and program 							
	restrictions in bits 5:4 are							
	sufficient							
Reserved	Reserved: 1b		08	1b				
Program Resume to Suspend	Count value: 0h~Fh (0~15)	2Dh	12:09	1111b	7Fh			
Interval (Typical)	Typical Time = (Count + 1) * 64us							
	Count value: 00h~1Fh (0~31)		15:13	1 0011b				
Program Suspend Latency	Maximum Time = (Count + 1) * Units		17:16					
(Max.)	Units							
· · · · ·	00: 128ns, 01: 1us	2Eh	19:18	01b	F6h			
	10: 8us, 11: 64us							
Erase Resume to Suspend	Count value: 0h~Fh (0~15)					23:20	1111b	
Interval (Typical)	Typical Time = $(Count + 1) * 64us$							
	Count value: 00h~1Fh (0~31)		28:24	1 0011b				
Erase Suspend Latency	Maximum Time = (Count + 1) * Units							
(Max.)	00: 128ns, 01: 1us	2Fh	30:29	01b	33h			
	10: 8us, 11: 64us		50.29					
Suspend / Resume supported	0= Support 1= Not supported		31	0b				
Program Resume Instruction	Instruction to Resume a Program	30h	07:00	30h	30h			
Program Suspend Instruction	Instruction to Suspend a Program	3011 31h	15:08	B0h	B0h			
Erase Resume Instruction	Instruction to Resume Write/Erase	311 32h	23:16	30h	30h			
Erase Suspend Instruction	Instruction to Suspend Write/Erase	1		B0h	B0h			
	Instruction to Suspend White/Erase	33h	31:24		DULI			

Description	Comment	Byte Add (h) Offset	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
Reserved	Reserved: 11b		01:00	11b	
Status Register Polling Device Busy	 Bit 2: Read WIP bit [0] by 05h Read instruction Bit 3: Read bit 7 of Status Register by 70h Read instruction (0=not supported 1=support) Bit 07:04, Reserved: 1111b 	34h	07:02	11 1101b	F7h
	Count value: 00h~1Fh (0~31)		12:08	1 1101b	
Release from Deep Power-down (RDP) Delay (Max.)	<u>Maximum Time = (Count + 1) * Units</u> Units 00: 128ns, 01: 1us 10: 8us, 11: 64us	35h	14:13	01b	BDh
Release from Deep Power-down	Instruction to Exit Deep Power Down		15	1010 1011b	
(RDP) Instruction Enter Deep Power Down	 FFh: Don't need command Instruction to Enter Deep Power 	36h	22:16 23	(ABh) 1011 1001b	D5h
Instruction	Down		30:24	(B9h)	
Deep Power Down Supported	0: Supported 1: Not supported	37h	31	0b	5Ch
	Methods to exit 4-4-4 mode				
4-4-4 Mode Disable Sequences	◆ xx1xb: issue F5h instruction	38h	03:00	0000b	00h
4-4-4 Mode Enable Sequences	Methods to enter 4-4-4 mode		07:04 08	0 0000b	
0-4-4 Mode Supported	◆ x x1xxb: issue instruction 35h Performance Enhance Mode, Continuous Read, Execute in Place		09	1b	
0-4-4 Mode Exit Method	 0: Not supported 1: Supported xx_xxx1b: Mode Bits[7:0] = 00h will terminate this mode at the end of the current read operation. xx_xx1xb: If 3-Byte address active, input Fh on DQ0-DQ3 for 8 clocks. If 4-Byte address active, input Fh on DQ0-DQ3 for 10 clocks. xx_x1xxb: Reserved xx_1xxxb: Reserved xx_1xxxb: Input Fh (mode bit reset) on DQ0-DQ3 for 8 clocks. x1_xxxxb: Mode Bit[7:0]≠Axh 1x xxxxb: Reserved 	39h	15:10	11 1111b	FEh
0-4-4 Mode Entry Method	 xxx1b: Mode Bits[7:0] = A5h Note: QE must be set prior to using this mode x1xxb: Mode Bit[7:0]=Axh 1xxxb: Reserved 000b: No QE bit. Detects 1-1-4/1-4- 4 reads based on instruction 	3Ah	19:16	1101h	2Dh
Quad Enable (QE) bit Requirements	 010b: QE is bit 6 of Status Register. where 1=Quad Enable or 0=not Quad Enable 111b: Not Supported 	5	22:20	010b	
HOLD and RESET Disable by bit 4 of Ext. Configuration Register	0: Not supported		23	0b	

Description	Comment	Byte Add (h) Offset	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
Reserved		3Bh	31:24	FFh	FFh
Volatile or Non-Volatile Register and Write Enable Instruction for Status Register 1	 xxx_xxx1b: Non-Volatile Status Register 1, powers-up to last written value, use instruction 06h to enable write x1x_xxxxb: Reserved 1xx_xxxxb: Reserved 	3Ch	06:00	111 0000b	F0h
Reserved			07	1b	
Soft Reset and Rescue Sequence Support	Return the device to its default power-on state • x1_xxxxb: issue reset enable instruction 66h, then issue reset instruction 99h.	3Dh	13:08	01 0000b	10h
	• xx_xxxx_xxx1b: issue instruction		15:14	00b	
Exit 4-Byte Addressing	 E9h to exit 4-Byte address mode (write enable instruction 06h is not required) xx_xxxx_x1xxb: 8-bit volatile extended address register used to define A[31:A24] bits. Read with instruction C8h. Write instruction is C5h, data length is 1 byte. Return to lowest memory segment by setting A[31:24] to 00h and use 3-Byte addressing. xx_x1xx_xxxb: Hardware reset xx_x1xx_xxxb: Software reset (see bits 13:8 in this DWORD) xx_1xxx_xxxb: Reserved 1x xxxx xxxb: Reserved 	3Eh	23:16	1111 1000Ь	F8h

Description	Comment	Byte Add (h) Offset	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
Enter 4-Byte Addressing	 xxxx_xxx1b: issue instruction B7h (preceding write enable not required) xxxx_x1xxb: 8-bit volatile extended address register used to define A[31:24] bits. Read with instruction C8h. Write instruction is C5h with 1 byte of data. Select the active 128 Mbit memory segment by setting the appropriate A[31:24] bits and use 3-Byte addressing. xx1x_xxxb: Supports dedicated 4-Byte address instruction set. Consult vendor data sheet for the instruction set definition. 1xxx_xxxb: Reserved 	3Fh	31:24	1000 0000Ь	80h

Table 11. Parameter Table (1): 4-Byte Instruction Tables

Description	Comment	Byte Add (h) Offset	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
Support for (1-1-1) READ Command, Instruction=13h	0=not supported 1=supported		00	0b	
Support for (1-1-1) FAST_READ Command, Instruction=0Ch	0=not supported 1=supported		01	0b	
Support for (1-1-2) FAST_READ Command, Instruction=3Ch	0=not supported 1=supported		02	0b	
Support for (1-2-2) FAST_READ Command, Instruction=BCh	0=not supported 1=supported	00h	03	0b	00h
Support for (1-1-4) FAST_READ Command, Instruction=6Ch	0=not supported 1=supported		04	0b	0011
Support for (1-4-4) FAST_READ Command, Instruction=ECh	0=not supported 1=supported		05	0b	
Support for (1-1-1) Page Program Command, Instruction=12h	0=not supported 1=supported		06	0b	
Support for (1-1-4) Page Program Command, Instruction=34h	0=not supported 1=supported		07	0b	
Support for (1-4-4) Page Program Command, Instruction=3Eh	0=not supported 1=supported		08	0b	
Support for Erase Command – Type 1 size, Instruction lookup in next Dword	0=not supported 1=supported		09	0b	
Support for Erase Command – Type 2 size, Instruction lookup in next Dword	0=not supported 1=supported		10	0b	
Support for Erase Command – Type 3 size, Instruction lookup in next Dword	0=not supported 1=supported	01h	11	0b	00h
Support for Erase Command – Type 4 size, Instruction lookup in next Dword	0=not supported 1=supported		12	0b	
Support for (1-1-1) DTR_Read Command, Instruction=0Eh	0=not supported 1=supported		13	0b	
Support for (1-2-2) DTR_Read Command, Instruction=BEh	0=not supported 1=supported		14	0b	
Support for (1-4-4) DTR_Read Command, Instruction=EEh	0=not supported 1=supported		15	0b	

Description	Comment	Byte Add (h) Offset	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
Support for volatile individual sector lock Read command, Instruction=E0h	0=not supported 1=supported		16	0b	
Support for volatile individual sector lock Write command, Instruction=E1h	0=not supported 1=supported		17	0b	
Support for non-volatile individual sector lock read command, Instruction=E2h	0=not supported 1=supported	02h	18	0b	F0h
Support for non-volatile individual sector lock write command, Instruction=E3h	0=not supported 1=supported		19	0b	
Reserved	Reserved		23:20	1111b	
Reserved	Reserved	03h	31:24	FFh	FFh
Instruction for Erase Type 1	FFh=not supported	04h	07:00	FFh	FFh
Instruction for Erase Type 2	FFh=not supported	05h	15:08	FFh	FFh
Instruction for Erase Type 3	FFh=not supported	06h	23:16	FFh	FFh
Instruction for Erase Type 4	FFh=not supported	07h	31:24	FFh	FFh

Table 12. RPMC Parameter

Description	Comment	Byte Add (h) Offset	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
Flash_Hardening	0=Flash Hardening is supported. 1=Flash Hardening is not supported		00	0b	
MC_Size	0= Monotonic counter size is 32 bit 1= Reserved		01	0b	
Busy_Polling_Method :	0= Poll for OP1 busy using OP2 Extended Status[0] 1= Poll for OP1 busy using Status	00h	02	1b	3Ch
Reserved			03	1b	
Num_Counter-1:	Number of supported counters-1.		07:04	0011b	
OP1 Opcode		01h	15:08	9Bh	9Bh
OP2 Opcode		02h	23:16	96h	96h
Update_Rate	: Rate of Update = 5 * (2 ^ Update_ Rate) seconds	03h	27:24	0000b	F0h
Reserved	: Must be 0FH (1111b)		31:28 111	1111b	
Read Counter Polling Delay Typical case to calculate HMAC two times	0 : polling delay_read counter	04h	04:00	0 0101b	C5h
	units (00=1us, 01=16us, 10=128us, 11=1ms)		06:05	10b	
	reserved		07	1b	
Write Counter Polling Short Delay	0 : polling_short_delay_write_ counter		12:08	0 0100b	
	units (00=1us, 01=16us, 10=128us, 11=1ms)	05h	14:13	01b	A4h
	reserved		15	1b	
Write Counter Polling Long Delay	Bits4:0 : polling_long_delay_write_ counter		20:16 0 0010k	0 0010b	C2h
	Bits 6:5 : units (00=1ms, 01=16ms,10=128ms, 11= 1s)	06h 22:21	22:21	10b	
	Bit 7 : reserved		23	1b	
Reserved	: Must be FF	07h	31:24	FFh	FFh

Table 13. Parameter Table (2): Macronix Flash Parameter Tables

Description	Comment	Byte Add (h) Offset	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
Vcc Supply Maximum Voltage	2000h=2.000V 2700h=2.700V 3600h=3.600V	01h:00h	07:00 15:08	00h 36h	00h 36h
Vcc Supply Minimum Voltage	1650h=1.650V, 1750h=1.750V 2250h=2.250V, 2300h=2.300V 2350h=2.350V, 2650h=2.650V 2700h=2.700V	03h:02h	23:16 31:24	00h 27h	00h 27h
H/W Reset# pin	0=not supported 1=supported		00	0b	799Ch
H/W Hold# pin	0=not supported 1=supported		01	0b	
Deep Power Down Mode	0=not supported 1=supported		02	1b	
S/W Reset	0=not supported 1=supported		03	1b	
S/W Reset Instruction	Reset Enable (66h) should be issued before Reset Instruction	05h : 04h	11:04	1001 1001b (99h)	
Program Suspend/Resume	0=not supported 1=supported		12	1b	
Erase Suspend/Resume	0=not supported 1=supported		13	1b	
Unused			14	1b	
Wrap-Around Read mode	0=not supported 1=supported		15	0b	
Wrap-Around Read mode Instruction		06h	23:16	FFh	FFh
Wrap-Around Read data length	08h:support 8B wrap-around read 16h:8B&16B 32h:8B&16B&32B 64h:8B&16B&32B&64B	07h	31:24	FFh	FFh
Individual block lock	0=not supported 1=supported	0Bh : 08h -	00	0b	CFFEh
Individual block lock bit (Volatile/Nonvolatile)	0=Volatile 1=Nonvolatile		01	1b	
Individual block lock Instruction			09:02	1111 1111b (FFh)	
Individual block lock Volatile protect bit default protect status	0=protect 1=unprotect		10	1b	
Secured OTP	0=not supported 1=supported		11	1b	
Read Lock	0=not supported 1=supported		12	0b	
Permanent Lock	0=not supported 1=supported		13	0b	
Unused			15:14	11b	
Unused			31:16	FFh	FFh
Unused		0Fh : 0Ch	31:00	FFh	FFh

- Note 1: h/b is hexadecimal or binary.
- Note 2: **(x-y-z)** means I/O mode nomenclature used to indicate the number of active pins used for the opcode (x), address (y), and data (z). At the present time, the only valid Read SFDP instruction modes are: (1-1-1), (2-2-2), and (4-4-4)
- Note 3: Wait States is required dummy clock cycles after the address bits or optional mode bits.
- Note 4: **Mode Bits** is optional control bits that follow the address bits. These bits are driven by the system controller if they are specified. (eg,read performance enhance toggling bits)
- Note 5: 4KB=2^0Ch,32KB=2^0Fh,64KB=2^10h
- Note 6: All unused and undefined area data is blank FFh for SFDP Tables that are defined in Parameter Identification Header. All other areas beyond defined SFDP Table are reserved by Macronix.

9-35. Write Root Key Register (9Bh + 00h)

The Write Root Key Register instruction is used to program the RPMC root key. The Macronix MX77L25650F supports 4 monotonic counters, and each counter has a corresponding root key. Note that the Root Key Register is OTP (One-Time-Programmable).

TruncatedSign[223:0]=HMAC(RootKey[255:0], (9Bh, 00h, CounterAddr[7:0], Reserved[7:0]))

If RootKey[255:0] value is 256'hFF..FFh, RootKey is used as a temporary key, and if the monotonic counter has not been initialized, the corresponding monotonic counter value will be set to 0.

The instruction execution result is reflected to MC Status which can be read with the Read Monotonic Counter Status/Data (96h) instruction.

MC Status[7:0]	Description
1000 0000	Successful completion
0XXX XXX1	Busy
0XXX XX1X	This bit is set on below conditions, 1. Root Key Register overwrite 2. Counter Address is out of range 3. Truncated signature mismatch
0XXX X1XX	Incorrect payload size

Figure 37. Write Root Key Register Instruction

9-36. Update HMAC Key Register (9Bh + 01h)

The Update HMAC Key Register is used to update HMAC Key value. As with the RootKey, there are 4 HMAC Key registers too. Since the HMAC key register is volatile, the HMAC key should be updated after a power cycle.

HMAC Key[CounterAddr][255:0] = HMAC(RootKey[CounterAddr][255:0], KeyData[31:0])

Signature[255:0] = HMAC(HMAC Key[CounterAddr][255:0], (9Bh, 01h, CounterAddr[7:0].Reserved[7:0], KeyData[31:0]))

The instruction execution result is reflected to MC Status, which can be read with the Read Monotonic Counter Status/Data (96h) instruction.

MC Status[7:0]	Description
1000 0000	Successful completion
0XXX XXX1	Busy
0XXX XX1X	Monotonic Counter is uninitialized
0XXX X1XX	This bit is set on below conditions,1. Signature mismatch2. Counter Address is out of range3. Incorrect payload size

Figure 38. Update HMAC Key Register Instruction

9-37. Increment Monotonic Counter (9Bh + 02h)

The Increment Monotonic Counter instruction is used to increment the monotonic counter by 1.

Signature[255:0]=HMAC(HMAC Key[CounterAddr][255:0], (9Bh, 02h, CounterAddr[7:0]. Reserved[7:0], CounterData[31:0]*)) *CounterData[31:0] is current counter value read from MX77L25650F.

The instruction execution result is reflected to MC Status which can be read with the Read Monotonic Counter Status/Data (96h) instruction.

MC Status[7:0]	Description	
1000 0000	Successful completion	
0XXX XXX1	Busy	
0XXX XX1X	Monotonic Counter is uninitialized	
0XXX X1XX	This bit is set on below conditions, 1. Signature mismatch 2. Counter Address is out of range 3. Incorrect payload size	
0XXX 1XXX	This bit is set on below conditions, 1. HMAC Key Register is uninitialized 2. Monotonic Counter is uninitialized	
0XX1 XXXX	CounterData[31:0] does not match to the counter value inside MX77L25650F.	

Figure 39. Increment Monotonic Counter Instruction

9-38. Request Monotonic Counter (9Bh + 03h)

The Request Monotonic Counter instruction is used to read current counter value from the MX77L25650F.

Signature[255:0]=HMAC(HMAC Key[CounterAddr][255:0], (9Bh, 03h, CounterAddr[7:0]. Reserved[7:0], Tag[95:0]))

The instruction execution result is reflected to MC Status which can be read with the Read Monotonic Counter Status/Data (96h) instruction.

MC Status[7:0]	Description
1000 0000	Successful completion
0XXX XXX1	Busy
0XXX XX1X	Monotonic Counter is uninitialized
0XXX X1XX	This bit is set on below conditions,1. Signature mismatch2. Counter Address is out of range3. Incorrect payload size
0XXX 1XXX	This bit is set on below conditions, 1. HMAC Key Register is uninitialized 2. Monotonic Counter is uninitialized

After MC Status[0]=0, another Read Monotonic Counter Status/Data instruction should be issued to read out Tag[95:0], Counter Data[31:0] and Signature[255:0].

Signature[255:0]=HMAC(HMAC Key[CounterAddr][255:0], (Tag[95:0], Counter Data[31:0]))

9-39. Reserved Commands (9Bh + 04h~FFh)

The Reserved Commands should not be used.

The instruction execution result is reflected to MC Status which can be read with the Read Monotonic Counter Status/Data (96h) instruction.

MC Status[7:0]	Description
0XXX X1XX	Reserved commands is issued

9-40. Read Monotonic Counter Status/Data (96h)

The Read Monotonic Counter Status/Data instruction is used to read the execution result status or data of RPMC 9Bh instructions. The status, which is instruction dependent, is listed in each instruction. The following table shows instruction independent status.

MC Status[7:0]	Description
0000 0000	Power on state
0X1X XXXX	Fatal Error
Current value	MC Status[7:0] will NOT be updated until first 8 bits of 9Bh instructions is received.

Figure 41. Read MC Data Instruction (BUSY=0)

10. POWER-ON STATE

The device is at below states when power-up:

- Standby mode (please note it is not deep power-down mode)
- Write Enable Latch (WEL) bit is reset

The device must not be selected during power-up and power-down stage unless the VCC achieves below correct level:

- VCC minimum at power-up stage and then after a delay of tVSL
- GND at power-down

Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level.

An internal power-on reset (POR) circuit may protect the device from data corruption and inadvertent data change during power up state. When VCC is lower than VWI (POR threshold voltage value), the internal logic is reset and the flash device has no response to any command.

For further protection on the device, if the VCC does not reach the VCC minimum level, the correct operation is not guaranteed. The read, write, erase, and program command should be sent after the below time delay:

- tVSL after VCC reached VCC minimum level

Please refer to the "Figure 49. Power-up Timing".

Note:

- To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is recommended. (generally around 0.1uF)

- At power-down stage, the VCC drops below VWI level, all operations are disable and device has no response to any command. The data corruption might occur during the stage while a write, program, erase cycle is in progress.

11. ELECTRICAL SPECIFICATIONS

Table 14. ABSOLUTE MAXIMUM RATINGS

RATING		VALUE
Ambient Operating Temperature	Industrial grade	-40°C to 85°C
Storage Temperature	erature	
Applied Input Voltage		-0.5V to VCC+0.5V
Applied Output Voltage		-0.5V to VCC+0.5V
VCC to Ground Potential		-0.5V to 4.0V

NOTICE:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is stress rating only and functional operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.
- 2. Specifications contained within the following tables are subject to change.
- 3. During voltage transitions, all pins may overshoot Vss to -2.0V and Vcc to +2.0V for periods up to 20ns, see *Figure 42*, and *Figure 43*.

Figure 42. Maximum Negative Overshoot Waveform

Figure 43. Maximum Positive Overshoot Waveform

Table 15. CAPACITANCE TA = 25°C, f = 1.0 MHz

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
CIN	Input Capacitance			6	pF	VIN = 0V
COUT	Output Capacitance			8	pF	VOUT = 0V

11-1. Output Driving Strength

The device support fixed output driving strength , provide 75% driving strength of 15 Ohm Resistance.

Figure 44. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL

Figure 45. OUTPUT LOADING

Figure 46. SCLK TIMING DEFINITION

MX77L12850F

Table 16. DC CHARACTERISTICS

(Temperature = -40° C to 85° C, VCC = 2.7V ~ 3.6V)

Symbol	Parameter	Notes	Min.	Тур.	Max.	Units	Test Conditions
ILI	Input Load Current	1			±2	uA	VCC = VCC Max, VIN = VCC or GND
ILO	Output Leakage Current	1			±2	uA	VCC = VCC Max, VOUT = VCC or GND
ISB1	VCC Standby Current	1		10	60	uA	VIN = VCC or GND, CS# = VCC
ISB2	Deep Power-down Current			3	20	uA	VIN = VCC or GND, CS# = VCC
ICC1	VCC Read	1		10	17	mA	f=84MHz, (4 x I/O read) SCLK=0.1VCC/0.9VCC, SO=Open
ICC2	VCC Program Current (PP)	1		15	25	mA	Program in Progress, CS# = VCC
ICC3	VCC Write Status Register (WRSR) Current			15	20	mA	Program status register in progress, CS#=VCC
ICC4	VCC Sector/Block (32K, 64K) Erase Current (SE/BE/BE32K)	1		15	25	mA	Erase in Progress, CS#=VCC
ICC5	VCC Chip Erase Current (CE)	1		15	25	mA	Erase in Progress, CS#=VCC
VIL	Input Low Voltage		-0.5		0.8	V	
VIH	Input High Voltage		0.7VCC		VCC+0.4	V	
VOL	Output Low Voltage				0.2	V	IOL = 100uA
VOH	Output High Voltage		VCC-0.2			V	IOH = -100uA

Notes :

1. Typical values at VCC = 3.3V, T = 25°C. These currents are valid for all product versions (package and speeds).

2. Typical value is calculated by simulation.

MX77L12850F

Table 17. AC CHARACTERISTICS

(Temperature = -40° C to 85° C, VCC = 2.7V ~ 3.6V)

Symbol	Alt.	Parameter		Min.	Тур.	Max.	Unit
fSCLK	fC	Clock Frequency for all commands (FAST_READ, RDSFDP, PP, SE, BE, CE, DP, RES, RDP, WREN, WRDI, RDID, RDSR, WRSR)		D.C.		104	MHz
fRSCLK	fR	Clock Frequency for READ instr	uctions			54	MHz
fTSCLK		Clock Frequency for DREAD, 2F instructions	for DREAD, 2READ, QREAD, 4READ			84	MHz
tCH ⁽¹⁾	tCLH	IClock High Lime	Others (fSCLK) Normal Read (fRSCLK)	3.3 9			ns ns
tCL ⁽¹⁾	tCLL	Clock Low Time	Others (fSCLK) Normal Read (fRSCLK)	3.3 9			ns ns
tCLCH		Clock Rise Time (peak to peak)			1		V/ns
tCHCL		Clock Fall Time (peak to peak)		0.1			V/ns
tSLCH	tCSS	CS# Active Setup Time (relative	to SCLK)	5			ns
tCHSL		CS# Not Active Hold Time (relati	· · ·	7			ns
tDVCH	tDSU	Data In Setup Time	- /	2			ns
tCHDX	tDH	Data In Hold Time		3			ns
tCHSH		CS# Active Hold Time (relative to	D SCLK)	5			ns
tSHCH		CS# Not Active Setup Time (relative a	,	5			ns
			Read	7			ns
tSHSL	tCSH	ICS# Deselect Lime	Write/Erase/Program	30			
tSHQZ	tDIS		Wille/Elase/Flografi	30		8	ns
ISHQZ		Output Disable Time	Laading: 20p				ns
tCLQV	tV	· · ·	Loading: 30pF Loading: 15pF			8 6	ns ns
tCLQX	tHO	Output Hold Time		1			ns
tDP		CS# High to Deep Power-down	Mode			10	us
tRES1		CS# High to Standby Mode w Read	ithout Electronic Signature			30	us
tRES2		CS# High to Standby Mode with	Electronic Signature Read		1	30	us
tW		Write Status/Configuration Regis	ě – – – – – – – – – – – – – – – – – – –			40	ms
tBP	1	Byte-Program			10	50	us
tPP	1	Page Program Cycle Time			0.33	1.2	ms
tPP ⁽⁴⁾		Page Program Cycle Time (n by	tes)		0.008+ (nx0.004) ⁽⁵⁾	1.2	ms
tSE		Sector Erase Cycle Time			25	200	ms
tBE32		Block Erase (32KB) Cycle Time			140	600	ms
tBE		Block Erase (64KB) Cycle Time			250	1000	ms
tCE	<u> </u>	Chip Erase Cycle Time			40	120	S
tWRK	<u> </u>	Write Root Key Time			180	510	us
tUHK		Update HMAC Key Time			315	445	us
tIMC	<u> </u>	Increment Monotonic Counter Ti	me		0.045	300	ms
tRQMC		Request Monotonic Counter Tim			65	105	1
tRSL	<u> </u>	Suspend during OP1 command			+ +	100	us
tRSP					20		us
		Resume to suspend timing for O					ms
tESL ⁽⁶⁾	<u> </u>	Erase Suspend Latency			<u> </u>	20	us
tPSL ⁽⁶⁾		Program Suspend Latency		0.0	4000	20	us
tPRS ⁽⁷⁾	ļ	Latency between Program Resu		0.3	1000		us
tERS ⁽⁸⁾		Latency between Erase Resume	e and next Suspend	0.3	1000		us

AC CHARACTERISTICS-Continued

Symbol	Alt.	Parameter	Min.	Тур.	Max.	Unit
		Recovery Time from Read	20			us
tREADY		Recovery Time from Program	20			us
		Recovery Time from Erase	12			ms

Notes:

- 1. tCH + tCL must be greater than or equal to 1/ Frequency.
- 2. Typical values given for TA=25°C. Not 100% tested.
- 3. Test condition is shown as *Figure 44* and *Figure 45*.
- 4. While programming consecutive bytes, Page Program instruction provides optimized timings by selecting to program the whole 256 bytes or only a few bytes between 1~256 bytes.
- 5. "n"=how many bytes to program. In the formula, while n=1, byte program time=12us.
- 6. Latency time required to complete Erase/Program Suspend operation until WIP bit is "0".
- 7. For tPRS, Min. timing is needed to issue next program suspend command. However, a period of time equal to/or longer than typ. timing is also required to complete the program progress.
- 8. For tERS, Min. timing is needed to issue next erase suspend command. However, a period of time equal to/or longer than typ. timing is also required to complete the erase progress.

12. OPERATING CONDITIONS

At Device Power-Up and Power-Down

AC timing illustrated in *"Figure 47. AC Timing at Device Power-Up"* and *"Figure 48. Power-Down Sequence"* are for the supply voltages and the control signals at device power-up and power-down. If the timing in the figures is ignored, the device will not operate correctly.

During power-up and power-down, CS# needs to follow the voltage applied on VCC to keep the device not to be selected. The CS# can be driven low when VCC reach Vcc(min.) and wait a period of tVSL.

Figure 47. AC Timing at Device Power-Up

Symbol	Parameter	Notes	Min.	Max.	Unit
tVR	VCC Rise Time	1		500000	us/V

Notes :

1. Sampled, not 100% tested.

2. For AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer to "Table 17. AC CHARACTERISTICS".

Figure 48. Power-Down Sequence

During power-down, CS# needs to follow the voltage drop on VCC to avoid mis-operation.

Figure 49. Power-up Timing

Figure 50. Power Up/Down and Voltage Drop

When powering down the device, VCC must drop below V_{PWD} for at least tPWD to ensure the device will initialize correctly during power up. Please refer to *"Figure 50. Power Up/Down and Voltage Drop"* and *"Table 18. Power-Up/Down Voltage and Timing"* below for more details.

Table 18. Power-Up/Down Voltage and Timing

Symbol	Parameter	Min.	Max.	Unit
tVSL	VCC(min.) to device operation	800		us
VWI	Write Inhibit Voltage	1.5	2.5	V
V _{PWD}	VCC voltage needed to below V_{PWD} for ensuring initialization will occur		0.9	V
tPWD	The minimum duration for ensuring initialization will occur	300		us
VCC	VCC Power Supply	2.7	3.6	V

Note: These parameters are characterized only.

12-1. INITIAL DELIVERY STATE

The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status Register contains 40h (all Status Register bits are 0, except QE bit: QE=1).

13. ERASE AND PROGRAMMING PERFORMANCE

Parameter	Min.	Typ. ⁽¹⁾	Max. ⁽²⁾	Unit
Write Status Register Cycle Time			40	ms
Sector Erase Cycle Time (4KB)		25	200	ms
Block Erase Cycle Time (32KB)		0.14	0.6	S
Block Erase Cycle Time (64KB)		0.25	1	S
Chip Erase Cycle Time		40	120	S
Byte Program Time (via page program command)		10	50	us
Page Program Time		0.33	1.2	ms
Erase/Program Cycle		100,000		cycles

Note:

1. Typical program and erase time assumes the following conditions: 25°C, 3.3V, and all zero pattern.

2. Under worst conditions of minimum operation voltage and the temperature of the worst case.

3. System-level overhead is the time required to execute the first-bus-cycle sequence for the programming command.

14. DATA RETENTION

Parameter	Condition	Min.	Max.	Unit
Data retention	55°C	20		years

15. LATCH-UP CHARACTERISTICS

	Min.	Max.				
Input Voltage with respect to GND on all power pins		1.5 VCCmax				
Input Current on all non-power pins	-100mA	+100mA				
Test conditions: VCC = VCCmax, one pin at a time (compliant to JEDEC JESD78 standard).						

16. ORDERING INFORMATION

Please contact Macronix regional sales for the latest product selection and available form factors.

			I/O Config	guration	H/W Configuration	
PART NO.	Package	Temp.	Default I/O	Dummy Cycle	H/W Pin	Remark
MX77L12850FM2I40	8-SOP (200mil)	-40°C to 85°C	Permanent 4 I/O	Standard	Standard	
MX77L12850FZNI40	8-WSON (6x5mm)	-40°C to 85°C	Permanent 4 I/O	Standard	Standard	
MX77L12850FZ4I40	8-WSON (8x6mm, 3.4 x 4.3 EP)	-40°C to 85°C	Permanent 4 I/O	Standard	Standard	

17. PART NAME DESCRIPTION

18. PACKAGE INFORMATION

Doc. Title: Package Outline for SOP 8L 200MIL

Dimensions (inch dimensions are derived from the original mm dimensions)

SY UNIT	MBOL	Α	A 1	A2	b	С	D	Е	E1	e	L	L1	S	θ
	Min.	1.75	0.05	1.70	0.36	0.19	5.13	7.70	5.18		0.50	1.21	0.62	0°
mm	Nom.	1.95	0.15	1.80	0.41	0.20	5.23	7.90	5.28	1.27	0.65	1.31	0.74	5°
	Max.	2.16	0.20	1.91	0.51	0.25	5.33	8.10	5.38		0.80	1.41	0.88	8°
	Min.	0.069	0.002	0.067	0.014	0.007	0.202	0.303	0.204		0.020	0.048	0.024	0°
Inch	Nom.	0.077	0.006	0.071	0.016	0.008	0.206	0.311	0.208	0.050	0.026	0.052	0.029	5°
	Max.	0.085	0.008	0.075	0.020	0.010	0.210	0.319	0.212		0.031	0.056	0.035	8°

Doc. Title: Package Outline for WSON 8L (6x5x0.8MM, LEAD PITCH 1.27MM)

Note:

This package has an exposed metal pad underneath the package. It is recommended to leave the metal pad floating or to connect it to the same ground as the GND pin of the package. Do not connect the metal pad to any other voltage or signal line on the PCB. Avoid placing vias or traces underneath the metal pad. Connection of this metal pad to any other voltage or signal line can result in shorts and/or electrical malfunction of the device.

Dimensions ((inch dimensions	are derived from the	original mm	dimensions)
			, ongina min	

S) UNIT	(MBOL	Α	A1	A2	b	D	D1	E	E1	L	е	У
	Min.	0.70			0.35	5.90	3.35	4.90	3.95	0.55		0.00
mm	Nom.			0.20	0.40	6.00	3.40	5.00	4.00	0.60	1 <u>.</u> 27	
	Max.	0.80	0.05		0.48	6.10	3.45	5.10	4.05	0.65	1	0.05
	Min.	0.028			0.014	0.232	0.132	0.193	0.156	0.022	1	0.00
Inch	Nom.			0.008	0.016	0.236	0.134	0.197	0.157	0.024	0.05	
	Max.	0.032	0.002		0.019	0.240	0.136	0.201	0.159	0.026		0.002

Doc. Title: Package Outline for WSON 8L (8x6x0.8MM, LEAD PITCH 1.27MM, E.P. 3.4x4.3MM)

Note:

This package has an exposed metal pad underneath the package. It is recommended to leave the metal pad floating or to connect it to the same ground as the GND pin of the package. Do not connect the metal pad to any other voltage or signal line on the PCB. Avoid placing vias or traces underneath the metal pad. Connection of this metal pad to any other voltage or signal line can result in shorts and/or electrical malfunction of the device.

D	/			
Dimensions	(inch dimensions	s are derived from	the original	mm dimensions)
Dimonolonio			r ano originar	min annonoiono,

SY UNIT		Α	A1	A2	b	D	D1	E	E1	L	е	У
	Min.	0.70			0.35	7.90	3.35	5.90	4.25	0.45		0.00
mm	Nom.			0.20	0.40	8.00	3.40	6.00	4.30	0.50	1.27	
	Max.	0.80	0.05	-	0.48	8.10	3.45	6.10	4.35	0.55	-	0.05
	Min.	0.028		-	0.014	0.311	0.132	0.232	0.167	0.018		0.00
Inch	Nom.			0.008	0.016	0.315	0.134	0.236	0.169	0.020	0.05	
	Max.	0.032	0.002		0.019	0.319	0.136	0.240	0.171	0.022	-	0.002

19. REVISION HISTORY

Revision August 13, 2019	Descriptions	Page
1.0	 Removed "Advanced Information" to align with the product status Modified "Block Diagram" Revised LATCH-UP testing descriptions. Content correction. 	ALL P7 P84 P16
October 08, 2019 1.1	1. Added Part No. : MX77L12850FZ4I40 information	ALL
April 26, 2021 1.2	 Added "11-1. Output Driving Strength" description Revised Doc. Title of package outline. 	P76 P87

Except for customized products which has been expressly identified in the applicable agreement, Macronix's products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and not for use in any applications which may, directly or indirectly, cause death, personal injury, or severe property damages. In the event Macronix products are used in contradicted to their target usage above, the buyer shall take any and all actions to ensure said Macronix's product qualified for its actual use in accordance with the applicable laws and regulations; and Macronix as well as it's suppliers and/or distributors shall be released from any and all liability arisen therefrom.

Copyright© Macronix International Co., Ltd. 2019-2021. All rights reserved, including the trademarks and tradename thereof, such as Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider, Nbit, Macronix NBit, HybridNVM, HybridFlash, HybridXFlash, XtraROM, KH Logo, BE-SONOS, KSMC, Kingtech, MXSMIO, Macronix vEE, RichBook, Rich TV, OctaBus, FitCAM, ArmorFlash, LybraFlash. The names and brands of third party referred thereto (if any) are for identification purposes only.

For the contact and order information, please visit Macronix's Web site at: http://www.macronix.com

MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.