PRELIMINARY PRODUCT SPECIFICATIONS

Integrated Circuits Group

LH28F640BFN-PTTLZ1

Flash Memory 64M (4M × 16)

(Model No.: LHF64FD1)

Spec No.: FM024001 Issue Date: April 1, 2002

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools

SHARP

- Audiovisual equipment
- Home appliance
- Communication equipment other than for trunk lines
- (2) Those contemplating using the products covered herein for the following equipment <u>which demands high</u> reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - Traffic control systems
 - Gas leak detectors and automatic cutoff devices
 - Rescue and security equipment
 - Other safety devices and safety equipment, etc.
- (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - Aerospace equipment
 - Communications equipment for trunk lines
 - Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
- (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

LHF64FD1

CONTENTS

PAGE

PAGE

44-Lead SOP Pinout 3
Pin Descriptions 4
Memory Map 5
Identifier Codes and OTP Address
for Read Operation
OTP Block Address Map for OTP Program 7
Bus Operation 8
Command Definitions
Functions of Block Lock and Block Lock-Down 11
Block Locking State Transitions upon Command Write 11
Status Register Definition 12
Extended Status Register Definition 13

1 Electrical Specifications 14
1.1 Absolute Maximum Ratings 14
1.2 Operating Conditions 14
1.2.1 Capacitance 15
1.2.2 AC Input/Output Test Conditions 15
1.2.3 DC Characteristics 16
1.2.4 AC Characteristics - Read-Only Operations
1.2.5 AC Characteristics - Write Operations 20
1.2.6 Reset Operations 22
1.2.7 Block Erase, Full Chip Erase, (Page Buffer) Program and OTP Program Performance
2 Related Document Information

1

LHF64FD1

The product, which is Page Mode Flash memory, is a low power, high density, low cost, nonvolatile read/write storage solution for a wide range of applications. The product can operate at $V_{CC}=2.7V-3.6V$. Its low voltage operation capability greatly extends battery life for portable applications.

The product provides high performance asynchronous page mode. It allows code execution directly from Flash, thus eliminating time consuming wait states.

The memory array block architecture utilizes Enhanced Data Protection features, and provides separate Parameter and Main Blocks that provide maximum flexibility for safe nonvolatile code and data storage.

Fast program capability is provided through the use of high speed Page Buffer Program.

Special OTP (One Time Program) block provides an area to store permanent code such as a unique number.

* ETOX is a trademark of Intel Corporation.

Figure 1. 44-Lead SOP Pinout

	Table 1. Pin Descriptions						
Symbol	Туре	Name and Function					
A ₀ -A ₂₁	INPUT	ADDRESS INPUTS: Inputs for addresses. 64M: A ₀ -A ₂₁					
DQ ₀ -DQ ₁₅	INPUT/ OUTPUT	DATA INPUTS/OUTPUTS: Inputs data and commands during CUI (Command User Interface) write cycles, outputs data during memory array, status register, query code and identifier code reads. Data pins float to high-impedance (High Z) when the chip or outputs are deselected. Data is internally latched during an erase or program cycle.					
CE#	INPUT	CHIP ENABLE: Activates the device's control logic, input buffers, decoders and sense amplifiers. CE#-high (V_{IH}) deselects the device and reduces power consumption to standby levels.					
RST#	INPUT	RESET: When low (V_{IL}) , RST# resets internal automation and inhibits write operations which provides data protection. RST#-high (V_{IH}) enables normal operation. After power-up or reset mode, the device is automatically set to read array mode. RST# must be low during power-up/down.					
OE#	INPUT	OUTPUT ENABLE: Gates the device's outputs during a read cycle.					
WE#	INPUT	WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data ar latched on the rising edge of CE# or WE# (whichever goes high first).					
V _{CC}	SUPPLY	DEVICE POWER SUPPLY (2.7V-3.6V): With $V_{CC} \leq V_{LKO}$, all write attempts to the flash memory are inhibited. Device operations at invalid V_{CC} voltage (see DC Characteristics) produce spurious results and should not be attempted.					
GND	SUPPLY	GROUND: Do not float any ground pins.					

4

LHF64FD1

-	CK NUMBER	
134	4K-WORD	3FF000H - 3FFFFFH
133	4K-WORD	3FE000H - 3FEFFFH 3FD000H - 3FDFFFH
132 131	4K-WORD 4K-WORD	3FC000H - 3FCFFFH
130	4K-WORD	3FB000H - 3FBFFFH
129	4K-WORD	3FA000H - 3FAFFFH
128	4K-WORD	3F9000H - 3F9FFFH
127	4K-WORD	3F8000H - 3F8FFFH
126	32K-WORD	3F0000H - 3F7FFFH
125	32K-WORD	3E8000H - 3EFFFFH
124	32K-WORD	3E0000H - 3E7FFFH
123	32K-WORD	3D8000H - 3DFFFFH 3D0000H - 3D7FFFH
122 121	32K-WORD 32K-WORD	3C8000H - 3D/FFFH
121	32K-WORD	3C0000H - 3C7FFFH
119	32K-WORD	3B8000H - 3BFFFFH
118	32K-WORD	3B0000H - 3B7FFFH
117	32K-WORD	3A8000H - 3AFFFFH
116	32K-WORD	3A0000H - 3A7FFFH
115	32K-WORD	398000H - 39FFFFH
114	32K-WORD	390000H - 397FFFH
113	32K-WORD	388000H - 38FFFFH 380000H - 387FFFH
112 111	32K-WORD 32K-WORD	380000H - 387FFFH 378000H - 37FFFFH
	32K-WORD	
109	32K-WORD	368000H - 36FFFFH
108	32K-WORD	360000H - 367FFFH
107	32K-WORD	358000H - 35FFFFH
106	32K-WORD	350000H - 357FFFH
105	32K-WORD	348000H - 34FFFFH
104	32K-WORD	340000H - 347FFFH
103 102	32K-WORD	_ 338000H - 33FFFFH 330000H - 337FFFH
102	32K-WORD 32K-WORD	328000H - 337FFFH
101	32K-WORD	320000H - 327FFFH
99	32K-WORD	318000H - 31FFFFH
98	32K-WORD	310000H - 317FFFH
97	32K-WORD	308000H - 30FFFFH
96	32K-WORD	300000H - 307FFFH
95	32K-WORD	2F8000H - 2FFFFFH
94	32K-WORD	2F0000H - 2F7FFFH
93	32K-WORD	2E8000H - 2EFFFFH 2E0000H - 2E7FFFH
<u>92</u> 91	32K-WORD 32K-WORD	2D8000H - 2DFFFFH
91 90	32K-WORD	2D0000H - 2D7FFFH
89	32K-WORD	2C8000H - 2CFFFFH
88	32K-WORD	2C0000H - 2C7FFFH
87	32K-WORD	2B8000H - 2BFFFFH
86	32K-WORD	2B0000H - 2B7FFFH
85	32K-WORD	2A8000H - 2AFFFFH
84	32K-WORD	2A0000H - 2A7FFFH
83	32K-WORD	298000H - 29FFFFH
82 01	32K-WORD	290000H - 297FFFH 288000H - 28FFFFH
81 80	32K-WORD 32K-WORD	280000H - 287FFFH
<u>80</u> 79	32K-WORD	278000H - 27FFFFH
78	32K-WORD	270000H - 277FFFH
77	32K-WORD	268000H - 26FFFFH
76	32K-WORD	260000H - 267FFFH
75	32K-WORD	258000H - 25FFFFH
74	32K-WORD	250000H - 257FFFH
73	32K-WORD	248000H - 24FFFFH
72	32K-WORD	240000H - 247FFFH
71	32K-WORD	238000H - 23FFFFH
70 60	32K-WORD	230000H - 237FFFH 228000H - 22FFFFH
69 68	32K-WORD	228000H - 22FFFFH 220000H - 227FFFH
<u>68</u> 67	32K-WORD 32K-WORD	218000H - 22/FFFH
67 66	32K-WORD 32K-WORD	210000H - 217FFFH
65	32K-WORD	208000H - 20FFFFH

	OCK NUMBER	ADDRESS RANGI 11f8000h - 1fffffh
63 62	32K-WORD 32K-WORD	1F0000H - 1F7FFFH
61	32K-WORD	1E8000H - 1EFFFFH
60	32K-WORD	1E0000H - 1E7FFFH
59	32K-WORD	1D8000H - 1DFFFFH
58	32K-WORD	1D0000H - 1D7FFFH
57 56	32K-WORD	1C8000H - 1CFFFFH 1C0000H - 1C7FFFH
55	32K-WORD 32K-WORD	1B8000H - 1BFFFFH
54	32K-WORD	1B0000H - 1B7FFFH
53	32K-WORD	1A8000H - 1AFFFFH
52	32K-WORD	1A0000H - 1A7FFFH
51 50	32K-WORD	198000H - 19FFFFH 190000H - 197FFFH
49	32K-WORD 32K-WORD	188000H - 18FFFFH
48	32K-WORD	180000H - 187FFFH
47	32K-WORD	178000H - 17FFFFH
46	32K-WORD	170000H - 177FFFH
45 44	32K-WORD	168000H - 16FFFFH 160000H - 167FFFH
44	32K-WORD 32K-WORD	158000H - 15FFFFH
42	32K-WORD	150000H - 157FFFH
41	32K-WORD	148000H - 14FFFFH
40	32K-WORD	140000H - 147FFFH
<u>39</u> 38	32K-WORD 32K-WORD	138000H - 13FFFFH 130000H - 137FFFH
37	32K-WORD	128000H - 12FFFFH
36	32K-WORD	120000H - 127FFFH
35	32K-WORD	118000H - 11FFFFH
34	32K-WORD	110000H - 117FFFH
<u>33</u> 32	32K-WORD 32K-WORD	108000H - 10FFFFH 100000H - 107FFFH
31	32K-WORD	0F8000H - 0FFFFFH
30	32K-WORD	0F0000H - 0F7FFFH
29	32K-WORD	0E8000H - 0EFFFFH
28	32K-WORD	0E0000H - 0E7FFFH
27	32K-WORD	0D8000H - 0DFFFFH
26 25	32K-WORD 32K-WORD	0D0000H - 0D7FFFH 0C8000H - 0CFFFFH
24	32K-WORD	0C0000H - 0C7FFFH
23	32K-WORD	0B8000H - 0BFFFFH
22	32K-WORD	0B0000H - 0B7FFFH
21 20	32K-WORD 32K-WORD	0A8000H - 0AFFFFH 0A0000H - 0A7FFFH
19	32K-WORD	098000H - 09FFFFH
18	32K-WORD	090000H - 097FFFH
17	32K-WORD	088000H - 08FFFFH
16	32K-WORD	080000H - 087FFFH 078000H - 07FFFFH
15 14	32K-WORD 32K-WORD	070000H - 077FFFH
13	32K-WORD	068000H - 06FFFFH
12	32K-WORD	060000H - 067FFFH
11	32K-WORD	058000H - 05FFFFH
10	32K-WORD	050000H - 057FFFH 048000H - 04FFFFH
9 8	32K-WORD 32K-WORD	040000H - 047FFFH
7	32K-WORD	038000H - 03FFFFH
6	32K-WORD	030000H - 037FFFH
5	32K-WORD	028000H - 02FFFFH
4	32K-WORD	020000H - 027FFFH 018000H - 01FFFFH
<u>3</u> 2	32K-WORD 32K-WORD	018000H - 017FFFH
1	32K-WORD	008000H - 00FFFFH
0	32K-WORD	000000H - 007FFFH

Figure 2. Memory Map (Top Parameter)

Rev. 2.41

Table 2	Identifier Codes and OTP Address for Read Operation	۱.
10010 2.	identifier codes and orr riddress for read operation	

		<u>,</u>		
	Code	Address [A ₂₁ -A ₀]	Data [DQ ₁₅ -DQ ₀]	Notes
Manufacturer Code	Manufacturer Code	000000Н	00B0H	
Device Code	Top Parameter Device Code	000001H	00B0H	1
Block Lock Configuration	Block is Unlocked	Block	$DQ_0 = 0$	2
Code	Block is Locked	Address + 2	$DQ_0 = 1$	2
	Block is not Locked-Down	Block	$DQ_1 = 0$	2
	Block is Locked-Down	Address + 2	DQ ₁ = 1	2
OTP	OTP Lock	000080H	OTP-LK	3
	OTP	000081- 000088H	OTP	4

NOTES:

Top parameter device has its parameter blocks at the highest address.
 DQ₁₅-DQ₂ are reserved for future implementation.
 OTP-LK=OTP Block Lock configuration.
 OTP=OTP Block data.

000088H	
	Customer Programmable Area
000085H	
000084H	
	Factory Programmed Area
000081H	
000080H	Reserved for Future Implementation

Figure 3. OTP Block Address Map for OTP Program (The area outside 80H~88H cannot be used.)

Table 3. Bus $Operation^{(1, 2)}$							
Mode	Notes	RST#	CE#	OE#	WE#	Address	DQ ₀₋₁₅
Read Array	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	Х	D _{OUT}
Output Disable		V _{IH}	V _{IL}	V _{IH}	V _{IH}	Х	High Z
Standby		V _{IH}	V _{IH}	Х	Х	Х	High Z
Reset	3	V _{IL}	Х	Х	Х	Х	High Z
Read Identifier Codes/OTP	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	See Table 2	See Table 2
Read Query	6,7	V _{IH}	V _{IL}	V _{IL}	V _{IH}	See Appendix	See Appendix
Write	4,5,6	V _{IH}	V _{IL}	V _{IH}	V _{IL}	Х	D _{IN}

NOTES:

NOTES:
1. See DC Characteristics for V_{IL} or V_{IH} voltages.
2. X can be V_{IL} or V_{IH} for control pins and addresses.
3. RST# at GND±0.2V ensures the lowest power consumption.
4. Command writes involving block erase, full chip erase, (page buffer) program or OTP program are reliably executed when V_{CC}=2.7V-3.6V.
5. Refer to Table 4 for valid D_{IN} during a write operation.
6. Never hold OE# low and WE# low at the same timing.
7. Refer to Appendix of LH28F640BF series for more information about query code.

Table 4. Command Definitions ⁽¹⁰⁾								
	Bus		First Bus Cycle		Second Bus Cycle			
Command	Cycles Req'd	Notes	Oper ⁽¹⁾	Addr ⁽²⁾	Data ⁽³⁾	Oper ⁽¹⁾	Addr ⁽²⁾	Data ⁽³⁾
Read Array	1	2	Write	Х	FFH			
Read Identifier Codes/OTP	≥2	2,3,4	Write	Х	90H	Read	IA or OA	ID or OD
Read Query	≥ 2	2,3,4	Write	Х	98H	Read	QA	QD
Read Status Register	2	2,3,11	Write	BA or WA	70H	Read	BA or WA	SRD
Clear Status Register	1	2	Write	Х	50H			
Block Erase	2	2,3,5	Write	BA	20H	Write	BA	D0H
Full Chip Erase	2	2,5,8	Write	Х	30H	Write	Х	D0H
Program	2	2,3,5,6	Write	WA	40H or 10H	Write	WA	WD
Page Buffer Program	≥4	2,3,5,7	Write	WA	E8H	Write	WA	N-1
Block Erase and (Page Buffer) Program Suspend	1	2,8	Write	BA or WA	B0H			
Block Erase and (Page Buffer) Program Resume	1	2,8	Write	BA or WA	D0H			
Set Block Lock Bit	2	2	Write	BA	60H	Write	BA	01H
Clear Block Lock Bit	2	2,9	Write	BA	60H	Write	BA	D0H
Set Block Lock-down Bit	2	2	Write	BA	60H	Write	BA	2FH
OTP Program	2	2,3,8	Write	OA	COH	Write	OA	OD

NOTES:

1. Bus operations are defined in Table 3.

2. The address which is written at the first bus cycle should be the same as the address which is written at the second bus cycle.

X=Any valid address within the device.

IA=Identifier codes address (See Table 2).

QA=Query codes address. Refer to Appendix of LH28F640BF series for details.

BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit.

WA=Address of memory location for the Program command or the first address for the Page Buffer Program command. OA=Address of OTP block to be read or programmed (See Figure 3).

3. ID=Data read from identifier codes. (See Table 2).

QD=Data read from query database. Refer to Appendix of LH28F640BF series for details.

SRD=Data read from status register. See Table 7 and Table 8 for a description of the status register bits.

WD=Data to be programmed at location WA. Data is latched on the rising edge of WE# or CE# (whichever goes high first).

- OD=Data to be programmed at location OA. Data is latched on the rising edge of WE# or CE# (whichever goes high first).
- N-1=N is the number of the words to be loaded into a page buffer.
- 4. Following the Read Identifier Codes/OTP command, read operations access manufacturer code, device code, block lock configuration code, and the data within OTP block (See Table 2).
- The Read Query command is available for reading CFI (Common Flash Interface) information.
- 5. Block erase, full chip erase or (page buffer) program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when RST# is V_{IH}.
- 6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup.
- 7. Following the third bus cycle, inputs the program sequential address and write data of "N" times. Finally, input the any valid address within the target block to be programmed and the confirm command (D0H). Refer to Appendix of LH28F640BF series for details.
- 8. Full chip erase and OTP program operations can not be suspended. The OTP Program command can not be accepted

- while the block erase operation is being suspended. 9. Following the Clear Block Lock Bit command, the selected block is unlocked regardless of lock-down configuration. 10. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used.
- 11. When the status register data is read, input the address to which the erase or program operation is executed.

State	DQ1 ⁽¹⁾	$DQ_0^{(1)}$	State Name	Erase/Program Allowed ⁽²⁾
[00]	0	0	Unlocked	Yes
$[01]^{(3)}$	0	1	Locked	No
[10]	1	0	Unlocked	Yes
[11]	1	1	Locked	No

Table 5. Functions of Block Lock⁽⁴⁾ and Block Lock-Down

NOTES:

1. $DQ_0=1$: a block is locked; $DQ_0=0$: a block is unlocked.

 $DQ_1=1$: a block is locked-down; $DQ_1=0$: a block is not locked-down.

2. Erase and program are general terms, respectively, to express: block erase, full chip erase and (page buffer) program operations.

3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [01] regardless of the states before power-off or reset operation.

4. OTP (One Time Program) block has the lock function which is different from those described above.

C	urrent Sta	ate	Result after Lock Command Written (Next State)				
State	DQ ₁	DQ ₀	Set Lock ⁽¹⁾	Clear Lock ⁽¹⁾	Set Lock-down ⁽¹⁾		
[00]	0	0	[01]	No Change ⁽³⁾	[11] ⁽²⁾		
[01]	0	1	No Change	[00]	[11]		
[10]	1	0	[11]	No Change	$[11]^{(2)}$		
[11]	1	1	No Change	[10]	No Change		

Table 6. Block Locking State Transitions upon Command Write

NOTES:

1. "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lock-down" means Set Block Lock-Down Bit command.

2. When the Set Block Lock-Down Bit command is written to the unlocked block ($DQ_0=0$), the corresponding block is locked-down and automatically locked at the same time.

3. "No Change" means that the state remains unchanged after the command written.

R	R	R	R	R	R	R	R
15	14	13	12	11	10	9	8
WSMS	BESS	BEFCES	PBPOPS	R	PBPSS	DPS	R
7	6	5	4	3	2	1	0
ENHANCE R.7 = WRITE 1 = Ready 0 = Busy SR.6 = BLOC 1 = Block 1 0 = Block 1 0 = Block 1 SR.5 = BLOC STAT 1 = Error in 0 = Succes SR.4 = (PAGE OTP 1 = Error in 0 = Succes SR.3 = RESEF SR.2 = (PAGE STAT 1 = (Page 1 0 = (Page 1 0 = (Page 1 0 = (Page 1 0 = Locked 0 = Unlock	MENTS (R) E STATE MACI E STATE MACI E STATE MACI E STATE MACI E STATE MACI Erase Suspende Erase in Progre K ERASE ANI US (BEFCES) n Block Erase of sful Block Erase E BUFFER) PRO PROGRAM ST n (Page Buffer) Sful (Page Buffer) Sful (Page Buffer) Sful (Page Buffer) Sful (Page Buffer) Sful (Page Buffer) Stuffer) Program Buffer) Program CE PROTECT So or Program Atted d Block, Operati	ess/Completed D FULL CHIP H or Full Chip Era se or Full Chip Era se or Full Chip H OGRAM AND FATUS (PBPOP Program or OT Fer) Program or OT TURE ENHAN OGRAM SUSP n Suspended n in Progress/Co STATUS (DPS) empted on a	S (BESS) ERASE se Erase S) P Program OTP Program CEMENTS (R) END ompleted	buffer) progra invalid while If both SR.5 : erase, page bu lock-down bit entered. SR.1 does no bit. The WSM Erase, Full O Program cor depending on set. Reading t the Read Ide lock bit status SR.15 - SR.8, should be mas	and SR.4 are "1" affer program, set t, attempt, an imp t provide a contin 1 interrogates the Chip Erase, (Pag nmand sequence the attempted op the block lock con- entifier Codes/OT	k erase, full ch m completion. a s after a block /clear block loc roper command block lock bit o ge Buffer) Pro- es. It informs eration, if the b nfiguration cod CP command is	SR.6 - SR.1 a erase, full cl k bit, set blc d sequence w n of block lc only after Blc ogram or O' s the syste block lock bin es after writi ndicates blc

15 14 13 12 11 10 9 8 SMS R R R R R R R 7 6 5 4 3 2 1 0 SR.15.8 = RESERVED FOR FUTURE ENHANCEMENTS (R) NOTES: After issue a Page Buffer Program command is accel If XSR 7:s' 0'', the command is not acceled and a next 1 SR.7 = STATE MACHINE STATUS (SMS) 1 = Page Buffer Program not available 0 = Page Buffer Program not available 0 = Page Buffer Program not available XSR.15-8 and XSR.6-0 are reserved for future use should be masked out when polling the extended st register.	R	R	R	R	R	R	R	R
76543210SR.15-8 = RESERVED FOR FUTURE ENHANCEMENTS (R)NOTES:ENHANCEMENTS (R)After issue a Page Buffer Program command (E XSR.7="1" indicates that the entered command is accepted and a next I Buffer Program command (E8H) should be issued agai check if page buffer is available or not.SR.7 = STATE MACHINE STATUS (SMS) 1 = Page Buffer Program not availableHere is a page Buffer Program command (E8H) should be issued agai check if page buffer is available or not.0 = Page Buffer Program not availableXSR.15-8 and XSR.6-0 are reserved for future use should be masked out when polling the extended st	15	14	13	12	11	10	9	8
SR.15-8 = RESERVED FOR FUTURENOTES:ENHANCEMENTS (R)After issue a Page Buffer Program command (E XSR.7="1" indicates that the entered command is accepted and a next I Buffer Program availableSR.7 = STATE MACHINE STATUS (SMS)Buffer Program command (E8H) should be issued agai check if page buffer is available or not.0 = Page Buffer Program not availableXSR.15-8 and XSR.6-0 are reserved for future use should be masked out when polling the extended st	SMS	R	R	R	R	R	R	R
ENHANCEMENTS (R)After issue a Page Buffer Program command (E XSR.7="1" indicates that the entered command is accept If XSR.7 is "0", the command is not accepted and a next I Buffer Program available 0 = Page Buffer Program not availableAfter issue a Page Buffer Program command (E XSR.7="1" indicates that the entered command is accepted and a next I Buffer Program command (E8H) should be issued again check if page buffer is available or not.0 = Page Buffer Program not availableXSR.15-8 and XSR.6-0 are reserved for future use should be masked out when polling the extended stip	7	6	5	4	3	2	1	0
	ENHANC SR.7 = STA 1 = Page 0 = Page	EMENTS (R) TE MACHINE S Buffer Program a Buffer Program r	TATUS (SMS) available not available		XSR.7="1" ind If XSR.7 is "0" Buffer Program check if page b XSR.15-8 and should be ma	a Page Buffer dicates that the e ', the command in n command (E8 buffer is available 1 XSR.6-0 are	Program co entered comm s not accepted BH) should be e or not. reserved for	and is accepted and a next Pa issued again future use a

 Electrical Specifications Absolute Maximum Ratings[*] Operating Temperature During Read, Erase and Program 0°C to +70°C ⁽¹⁾ 	*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.
Storage Temperature During under Bias	 NOTES: 1. Operating temperature is for commercial temperature product defined by this specification. 2. All specified voltages are with respect to GND. Minimum DC voltage is -0.5V on input/output pins and -0.2V on V_{CC} pins. During transitions, this level may undershoot to -2.0V for periods <20ns. Maximum DC voltage on input/output pins and V_{CC} is V_{CC}+0.5V which, during transitions, may overshoot to V_{CC} +2.0V for periods <20ns. 3. Output shorted for no more than one second. No more than one output shorted at a time.

1.2 Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Operating Temperature	T _A	0	+25	+70	°C	
V _{CC} Supply Voltage	V _{CC}	2.7	3.0	3.6	V	1
Main Block Erase Cycling		100,000			Cycles	
Parameter Block Erase Cycling		100,000			Cycles	

NOTES:

1. See DC Characteristics tables for voltage range-specific specification.

1.2.1 Capacitance⁽¹⁾ (T_A =+25°C, f=1MHz)

1.2.3 DC Characteristics

V_{CC}=2.7V-3.6V

	1		·u -		1	1		
Symbol	Paran	neter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
I _{LI}	Input Load Current	1	-1.0		+1.0	μΑ	V _{CC} =V _{CC} Max.,	
I _{LO}	Output Leakage Cur	rent	1	-1.0		+1.0	μΑ	V _{IN} /V _{OUT} =V _{CC} or GND
I _{CCS}	V _{CC} Standby Curren	t	1		6	25	μΑ	V _{CC} =V _{CC} Max., CE#=RST#= V _{CC} ±0.2V
I _{CCAS}	V _{CC} Automatic Pow	er Savings Current	1,4		4	20	μΑ	V _{CC} =V _{CC} Max., CE#=GND±0.2V
I _{CCD}	V _{CC} Reset Power-De	own Current	1		4	20	μΑ	RST#=GND±0.2V
Icon	Average V _{CC} Read Current Normal Mode		1		15	25	mA	V _{CC} =V _{CC} Max., CE#=V _{IL} ,
I _{CCR}	Average V _{CC} Read Current Page Mode	8 Word Read	1		5	10	mA	OE#=V _{IH} , f=5MHz
I _{CCW}	V _{CC} (Page Buffer) P	rogram Current	1,5		20	60	mA	
I _{CCE}	V _{CC} Block Erase, Fu Erase Current	ıll Chip	1,5		10	30	mA	
I _{CCWS} I _{CCES}	V _{CC} (Page Buffer) Program or Block Erase Suspend Current		1,2		15	210	μΑ	CE#=V _{IH}
V _{IL}	Input Low Voltage		5	-0.4		0.4	V	
V _{IH}	Input High Voltage		5	V _{CC} -0.4		V _{CC} + 0.4	V	
V _{OL}	Output Low Voltage		5			0.2	V	V _{CC} =V _{CC} Min., I _{OL} =100µA
V _{OH}	Output High Voltage	Output High Voltage		V _{CC} -0.2			V	V _{CC} =V _{CC} Min., I _{OH} =-100µA
V _{LKO}	V _{CC} Lockout Voltag	e	3	1.5			V	

NOTES:

1. All currents are in RMS unless otherwise noted. Typical values are the reference values at V_{CC} =3.0V and T_A =+25°C unless V_{CC} is specified.

I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or (page buffer) program while in block erase suspend mode, the device's current draw is the sum of I_{CCWS} or I_{CCES} and I_{CCR} or I_{CCW}, respectively.
 Block erase, full chip erase, (page buffer) program and OTP program are inhibited when V_{CC}≤V_{LKO}, and not guaranteed

outside the specified voltage.

4. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVQV}) provide new data when addresses are changed.

5. Sampled, not 100% tested.

1.2.4 AC Characteristics - Read-Only Operations⁽¹⁾

$V_{CC}=2.7V-3.6V, T_{A}=0^{\circ}C \text{ to }+70^{\circ}C$

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Read Cycle Time		80		ns
t _{AVQV}	Address to Output Delay			80	ns
t _{ELQV}	CE# to Output Delay	3		80	ns
t _{APA}	Page Address Access Time			35	ns
t _{GLQV}	OE# to Output Delay	3		20	ns
t _{PHQV}	RST# High to Output Delay			150	ns
t _{EHQZ} , t _{GHQZ}	CE# or OE# to Output in High Z, Whichever Occurs First	2		20	ns
t _{ELQX}	CE# to Output in Low Z	2	0		ns
t _{GLQX}	OE# to Output in Low Z	2	0		ns
t _{OH}	Output Hold from First Occurring Address, CE# or OE# change	2	0		ns

NOTES:

See AC input/output reference waveform for timing measurements and maximum allowable input slew rate.
 Sampled, not 100% tested.
 OE# may be delayed up to t_{ELQV} — t_{GLQV} after the falling edge of CE# without impact to t_{ELQV}.

19

1.2.5 AC Characteristics - Write Operations^{(1), (2)}

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Write Cycle Time		80		ns
$t_{PHWL} (t_{PHEL})$	RST# High Recovery to WE# (CE#) Going Low	3	150		ns
$t_{ELWL} (t_{WLEL})$	CE# (WE#) Setup to WE# (CE#) Going Low	4	0		ns
$t_{WLWH}(t_{ELEH})$	WE# (CE#) Pulse Width	4	50		ns
t _{DVWH} (t _{DVEH})	Data Setup to WE# (CE#) Going High	7	40		ns
t _{AVWH} (t _{AVEH})	Address Setup to WE# (CE#) Going High	7	50		ns
$t_{\rm WHEH}(t_{\rm EHWH})$	CE# (WE#) Hold from WE# (CE#) High		0		ns
t _{WHDX} (t _{EHDX})	Data Hold from WE# (CE#) High		0		ns
t_{WHAX} (t_{EHAX})	Address Hold from WE# (CE#) High		0		ns
$t_{\rm WHWL} (t_{\rm EHEL})$	WE# (CE#) Pulse Width High	5	30		ns
$t_{\rm WHGL}(t_{\rm EHGL})$	Write Recovery before Read		30		ns
$t_{\rm WHR0} \left(t_{\rm EHR0} \right)$	WE# (CE#) High to SR.7 Going "0"	3, 6		t_{AVQV} + 50	ns

NOTES:

1. The timing characteristics for reading the status register during block erase, full chip erase, (page buffer) program and OTP program operations are the same as during read-only operations. Refer to AC Characteristics for read-only operations.

2. A write operation can be initiated and terminated with either CE# or WE#.

3. Sampled, not 100% tested.

4. Write pulse width (t_{WP}) is defined from the falling edge of CE# or WE# (whichever goes low last) to the rising edge of CE# or WE# (whichever goes high first). Hence, t_{WP}=t_{WLWH}=t_{ELEH}=t_{WLEH}=t_{ELWH}.

5. Write pulse width high (t_{WPH}) is defined from the rising edge of CE# or WE# (whichever goes high first) to the falling edge of CE# or WE# (whichever goes low last). Hence, $t_{WPH}=t_{WHWL}=t_{EHEL}=t_{WHEL}=t_{EHWL}$.

6. t_{WHR0} (t_{EHR0}) after the Read Query or Read Identifier Codes/OTP command= t_{AVOV} +100ns.

7. Refer to Table 4 for valid address and data for block erase, full chip erase, (page buffer) program, OTP program or lock bit configuration.

21

LHF64FD1

3. Sampled, not 100% tested.

4. If RST# asserted while a block erase, full chip erase, (page buffer) program or OTP program operation is not executing, the reset will complete within 100ns.

5. When the device power-up, holding RST# low minimum 100ns is required after V_{CC} has been in predefined range and also has been in stable there.

22

1.2.7	Block Erase,	Full Chip	Erase, (Page	Buffer) Program	n and OTP Prog	gram Performance ⁽³⁾

Symbol	Parameter	Notes	Page Buffer Command is Used or not Used	Min.	Тур. ⁽¹⁾	Max. ⁽²⁾	Unit
t _{WPB}	4K-Word Parameter Block	2	Not Used		0.05	0.3	S
WPB	Program Time	2	Used		0.03	0.12	s
t _{WMB}	32K-Word Main Block	2	Not Used		0.38	2.4	s
WMB	Program Time	2	Used		0.24	1.0	s
t _{WHQV1} /	Word Program Time	2	Not Used		11	200	μs
t _{EHQV1}		2	Used		7	100	μs
t _{WHOV1} / t _{EHOV1}	OTP Program Time	2	Not Used		36	400	μs
t _{WHQV2} / t _{EHQV2}	4K-Word Parameter Block Erase Time	2	-		0.3	4	s
t _{WHQV3} / t _{EHQV3}	32K-Word Main Block Erase Time	2	-		0.6	5	s
	Full Chip Erase Time	2			80	700	s
t _{WHRH1} / t _{EHRH1}	(Page Buffer) Program Suspend Latency Time to Read	4	-		5	10	μs
t _{WHRH2} / t _{EHRH2}	Block Erase Suspend Latency Time to Read	4	-		5	20	μs
t _{ERES}	Latency Time from Block Erase Resume Command to Block Erase Suspend Command	5	-	500			μs

V_{CC} =2.7V-3.6V, T_A =0°C to +70°C

NOTES:

1. Typical values measured at V_{CC}=3.0V and T_A=+25°C. Assumes corresponding lock bits are not set. Subject to change based on device characterization.

2. Excludes external system-level overhead.

3. Sampled, but not 100% tested.

4. A latency time is required from writing suspend command (WE# or CE# going high) until SR.7 going "1".

5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t_{ERES} and its sequence is repeated, the block erase operation may not be finished.

LHF64FD1

2 Related Document Information⁽¹⁾

Document No.	Document Name
FUM00701	LH28F640BF series Appendix

NOTE:

1. International customers should contact their local SHARP or distribution sales offices.

A-1 RECOMMENDED OPERATING CONDITIONS

A-1.1 At Device Power-Up

AC timing illustrated in Figure A-1 is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly.

Figure A-1. AC Timing at Device Power-Up

For the AC specifications t_{VR} , t_R , t_F in the figure, refer to the next page. See the "ELECTRICAL SPECIFICATIONS" described in specifications for the supply voltage range, the operating temperature and the AC specifications not shown in the next page.

A-1.1.1 Rise and Fall Time

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{VR}	V _{CC} Rise Time	1	0.5	30000	μs/V
t _R	Input Signal Rise Time	1, 2		1	μs/V
t _F	Input Signal Fall Time	1, 2		1	μs/V

NOTES:

Sampled, not 100% tested.
 This specification is applied for not only the device power-up but also the normal operations.

A-1.2 Glitch Noises

Do not input the glitch noises which are below V_{IH} (Min.) or above V_{IL} (Max.) on address, data, reset, and control signals, as shown in Figure A-2 (b). The acceptable glitch noises are illustrated in Figure A-2 (a).

A-2 RELATED DOCUMENT INFORMATION⁽¹⁾

Document No.	Document Name
AP-001-SD-E	Flash Memory Family Software Drivers
АР-006-РТ-Е	Data Protection Method of SHARP Flash Memory
AP-007-SW-E	RP#, V _{PP} Electric Potential Switching Circuit

NOTE:

1. International customers should contact their local SHARP or distribution sales office.

SHARP

PRELIMINARY

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

SHARP[®]

NORTH AMERICA

SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903 Fast Info: (1) 800-833-9437 www.sharpsma.com

TAIWAN

SHARP Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341 Fax: (886) 2-2577-7326/2-2577-7328

CHINA

SHARP Microelectronics of China (Shanghai) Co., Ltd. 28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 Head Office:

No. 360, Bashen Road,

Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: smc@china.global.sharp.co.jp

EUROPE

SHARP Microelectronics Europe Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3 20097 Hamburg, Germany Phone: (49) 40-2376-2286 Fax: (49) 40-2376-2232 www.sharpsme.com

SINGAPORE

SHARP Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855

HONG KONG

SHARP-ROXY (Hong Kong) Ltd. 3rd Business Division, 17/F, Admiralty Centre, Tower 1 18 Harcourt Road, Hong Kong Phone: (852) 28229311 Fax: (852) 28660779 www.sharp.com.hk **Shenzhen Representative Office:** Room 13B1, Tower C, Electronics Science & Technology Building Shen Nan Zhong Road Shenzhen, P.R. China Phone: (86) 755-3273731 Fax: (86) 755-3273735

JAPAN

SHARP Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301 www.sharp-world.com

KOREA

SHARP Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819